maxon motor control

EPOS2 P Programmable Positioning Controllers

Programming Reference

Edition May 2016

Programmable Positioning Controllers

Programming Reference

Document ID: rel5878

PLEASE READ THIS FIRST

These instructions are intended for qualified technical personnel. Prior commencing with any activities ...

- you must carefully read and understand this manual and
- you must follow the instructions given therein.

We have tried to provide you with all information necessary to install and commission the equipment in a **secure**, **safe** and **time-saving** manner. Our main focus is ...

- to familiarize you with all relevant technical aspects,
- to let you know the easiest way of doing,
- to alert you of any possibly dangerous situation you might encounter or that you might cause if you do not follow the description,
- · to write as little and to say as much as possible and
- not to bore you with things you already know.

Likewise, we tried to skip repetitive information! Thus, you will find things **mentioned just once**. If, for example, an earlier mentioned action fits other occasions you then will be directed to that text passage with a respective reference.

Follow any stated reference – observe respective information – then go back and continue with the task!

PREREQUISITES FOR PERMISSION TO COMMENCE INSTALLATION

The EPOS2 P is considered as partly completed machinery according to EU directive 2006/42/EC, Article 2, Clause (g) and therefore is intended to be incorporated into or assembled with other machinery or other partly completed machinery or equipment.

You must not put the device into service, ...

- unless you have made completely sure that the other machinery the surrounding system the device is intended to be incorporated to – fully complies with the requirements stated in the EU directive 2006/42/EC!
- unless the surrounding system fulfills all relevant health and safety aspects!
- unless all respective interfaces have been established and fulfill the stated requirements!

TABLE OF CONTENTS

1	About this Doo	cument	5
2	Introduction		9
	2.1	Important Notice: Prerequisites for Permission to commence Installation	. 9
	2.2	General Information	. 9
	2.3	Documentation Structure	10
	2.4	Safety Precautions.	11
3	Programming		13
	3.1	Programming Tool «OpenPCS»	13
		3.1.1 Startup	13
		3.1.2 Licence Key Configuration	14
	3.2	Connection Setup	15
	3.3	Sample Project «HelloWorld»	17
	3.4	Creating New Project	18
	3.5	Program Code	19
		3.5.1 Writing Program Code	19
		3.5.2 Compiling and executing Program Code	20
		3.5.3 Debugging Program Code	21
4	Project Setting	js	23
	4.1	Resource Properties	23
	4.2	Task Properties	25
		4.2.1 Edit Task Properties.	25
	4.3	Network Configuration	27
		4.3.1 Overview	27
		4.3.2 Master Configuration	28
		4.3.3 Slave Configuration	35
		4.3.4 Minimal Network Configuration	45
	4.4		40
		4.4.1 Communication via Punction Blocks	40 47
5	Function Bloc	ke	49
5			
	5.1		50
		5.1.1 Administrative	50 68
	5.2	Maxon Litility Function Blocks	76
	5.2	5.2.1 Homing	76
		5.2.2 Position Mode	80
		5.2.3 Velocity Mode	86
		5.2.4 Current Mode	92
		5.2.5 Master Encoder Mode	98

	5	5.2.6 Step/Direction Mode 101 5.2.7 Interpolated Position Mode 104 5.2.8 Inputs and Outputs 112 5.2.9 Position Marker 117 5.2.10 Position Compare 120 5.2.11 Error Handling 123 5.2.12 Object Access 125 5.2.13 Data Handling 127 3 CANopen CiA 301 Eunction Blocks 131
6	U.	125
U	6. 6. 6. 6. 6.	1User Marker Area1352Marker Global Status Register1363Marker Global Axis Error Register1364Reserved Marker Area1375CANopen Slave Error Register Area138
7	Process I/O	s 139
	7. 7.	1 Internal Network 139 7.1.1 Process Inputs 139 7.1.2 Process Outputs 140 2 Slave Network 141 7.2.1 Process Inputs 141 7.2.2 Process Outputs 141 7.2.2 Process Outputs 142
8	Error Handl	ing 143
	8. 8.	1 Programming Environment Error Codes 143 2 Motion Control Function Blocks Error Codes 144
9	Example Pr	ojects 145
	9. 9. 9. 9.	1«HelloWorld»1452«SimpleMotionSequence»1463Best Practice Program Examples1474Application Program Examples148

1 About this Document

1.1 Intended Purpose

The purpose of the present document is to familiarize you with the described equipment and the tasks on safe and adequate installation and/or commissioning.

Observing the described instructions in this document will help you ...

- to avoid dangerous situations,
- to keep installation and/or commissioning time at a minimum and
- · to increase reliability and service life of the described equipment.

Use for other and/or additional purposes is not permitted. maxon motor, the manufacturer of the equipment described, does not assume any liability for loss or damage that may arise from any other and/or additional use than the intended purpose.

1.2 Target Audience

This document is meant for trained and skilled personnel working with the equipment described. It conveys information on how to understand and fulfill the respective work and duties.

This document is a reference book. It does require particular knowledge and expertise specific to the equipment described.

1.3 How to use

Take note of the following notations and codes which will be used throughout the document.

Notation	Explanation
«Abcd»	indicating a title or a name (such as of document, product, mode, etc.)
¤Abcd¤	indicating an action to be performed using a software control element (such as folder, menu, drop-down menu, button, check box, etc.) or a hardware element (such as switch, DIP switch, etc.)
(n)	referring to an item (such as order number, list item, etc.)
→	denotes "see", "see also", "take note of" or "go to"

Table 1-1 Notations used in this Document

1.4 Symbols and Signs

1.4.1 Safety Alerts

Take note of when and why the alerts will be used and what the consequences are if you should fail to observe them!

Safety alerts are composed of...

- a signal word,
- · a description of type and/or source of the danger,
 - the consequence if the alert is being ignored, and
- explanations on how to avoid the hazard.

Following types will be used:

1) DANGER

Indicates an **imminently hazardous situation**. If not avoided, the situation will result in death or serious injury.

2) WARNING

Indicates a **potentially hazardous situation**. If not avoided, the situation **can** result in death or serious injury.

3) CAUTION

Indicates a **probable hazardous situation** and is also used to alert against unsafe practices. If not avoided, the situation **may** result in minor or moderate injury.

Example:

DANGER

High Voltage and/or Electrical Shock

- Touching live wires causes death or serious injuries!
- Make sure that neither end of cable is connected to live power!
- Make sure that power source cannot be engaged while work is in process!
- Obey lock-out/tag-out procedures!
- Make sure to securely lock any power engaging equipment against unintentional engagement and tag with your name!

1.4.2 Prohibited Actions and Mandatory Actions

The signs define prohibitive actions. So, you must not!

Examples:

Do not touch!

Do not operate!

The signs point out actions to avoid a hazard. So, you **must**!

Examples:

Tag before work!

About this Document

1.4.3 Informatory Signs

•	

Requirement / Note / Remark

Indicates an action you must perform prior continuing or refers to information on a particular item.

Best Practice

Gives advice on the easiest and best way to proceed.

Material Damage

Points out information particular to potential damage of equipment.

Reference

Refers to particular information provided by other parties.

1.5 Sources for additional Information

For further details and additional information, please refer to below listed sources:

#	Reference
[1]	CiA 301 Communication Profile for Industrial Systems www.can-cia.org
[2]	CiA 302 Framework for CANopen Managers and Programmable CANopen Devices www.can-cia.org (section accessible for CiA members only)
[3]	CiA 405 Interface and Device Profile for IEC 61131-3 Programmable Devices www.can-cia.org
[4]	PLCopen: Function blocks for motion control http://plcopen.org/
[5]	Konrad Etschberger: Controller Area Network ISBN 3-446-21776-2
[6]	maxon motor: EPOS2 Firmware Specification EPOS Positioning Controller DVD or www.maxonmotor.com
[7]	maxon motor: EPOS2 P Firmware Specification EPOS Positioning Controller DVD or www.maxonmotor.com
[8]	maxon motor: EPOS2 P Supervisory Control Reference.chm EPOS Positioning Controller DVD or www.maxonmotor.com
Table 1-2	Sources for additional Information

1.6 Trademarks and Brand Names

For easier legibility, registered brand names are listed below and will not be further tagged with their respective trademark. It must be understood that the brands (the below list is not necessarily concluding) are protected by copyright and/or other intellectual property rights even if their legal trademarks are omitted in the later course of this document.

Brand Name	Trademark Owner
CANopen® CiA®	© CiA CAN in Automation e.V, DE-Nuremberg
Windows®	© Microsoft Corporation, USA-Redmond, WA
Table 1-3 Br	and Names and Trademark Owners

1.7 Copyright

© 2016 maxon motor. All rights reserved.

The present document – including all parts thereof – is protected by copyright. Any use (including reproduction, translation, microfilming and other means of electronic data processing) beyond the narrow restrictions of the copyright law without the prior approval of maxon motor ag, is not permitted and subject to persecution under the applicable law.

maxon motor ag

Brünigstrasse 220 P.O.Box 263 CH-6072 Sachseln Switzerland

Phone +41 41 666 15 00 Fax +41 41 666 16 50

www.maxonmotor.com

Introduction

Important Notice: Prerequisites for Permission to commence Installation

2 Introduction

2.1 Important Notice: Prerequisites for Permission to commence Installation

The EPOS2 P is considered as partly completed machinery according to EU directive 2006/42/EC, Article 2, Clause (g) and therefore is only intended to be incorporated into or assembled with other machinery or other partly completed machinery or equipment.

Risk of Injury

WARNING

Operating the device without the full compliance of the surrounding system with the EU directive 2006/42/EC may cause serious injuries!

- Do not operate the device, unless you have made sure that the other machinery fulfills the requirements stated in EU directive!
- Do not operate the device, unless the surrounding system fulfills all relevant health and safety aspects!
- Do not operate the device, unless all respective interfaces have been established and fulfill the stated requirements!

2.2 General Information

The present document provides you with information on programming the EPOS2 P Programmable Positioning Controllers. It describes the standard procedure to write and debug an IEC 61131 program based on an example and describes motion control function blocks.

Find the latest edition of the present document, as well as additional documentation and software to the EPOS2 P Programmable Positioning Controllers also on the Internet: →www.maxonmotor.com

Introduction **Documentation Structure**

2.3 **Documentation Structure**

The present document is part of a documentation set. Please find below an overview on the documentation hierarchy and the interrelationship of its individual parts:

Figure 2-1 **Documentation Structure**

2.4 Safety Precautions

Prior continuing ...

- make sure you have read and understood the section "PLEASE READ THIS FIRST" on page A-2,
- do not engage with any work unless you possess the stated skills (→chapter "1.2 Target Audience" on page 1-5),
- refer to section "Symbols and Signs" on page 1-6 to understand the subsequently used indicators,
- you must observe any regulation applicable in the country and/or at the site of implementation with regard to health and safety/accident prevention and/or environmental protection,
- take note of the subsequently used indicators and follow them at all times.

DANGER

High Voltage and/or Electrical Shock

Touching live wires causes death or serious injuries!

- Consider any power cable as connected to live power, unless having proven the opposite!
- Make sure that neither end of cable is connected to live power!
- Make sure that power source cannot be engaged while work is in process!
- Obey lock-out/tag-out procedures!
- Make sure to securely lock any power engaging equipment against unintentional engagement and tag with your name!

Requirements

- Make sure that all associated devices and components are installed according to local regulations.
- Be aware that, by principle, an electronic apparatus can not be considered fail-safe. Therefore, you
 must make sure that any machine/apparatus has been fitted with independent monitoring and safety
 equipment. If the machine/apparatus should break down, if it is operated incorrectly, if the control unit
 breaks down or if the cables break or get disconnected, etc., the complete drive system must return –
 and be kept in a safe operating mode.
- Be aware that you are not entitled to perform any repair on components supplied by maxon motor.

Best Practice

• For initial operation, make sure that the motor is free running. If not the case, mechanically disconnect the motor from the load.

Electrostatic Sensitive Device (ESD)

- Make sure to wear working cloth in compliance with ESD countermeasures.
- Handle device with extra care.

Introduction Safety Precautions

••page intentionally left blank••

3 Programming

3.1 Programming Tool «OpenPCS»

- 3.1.1 Startup
 - 1) Open «EPOS Studio».
 - Load a project (*.pjm), containing a programmable controller permitting you to open the programming tool.
 - 3) Click page ¤Tools¤ in page navigator.

	* ^
Tools	
Device Selection	*
EPOS2 P [Node 1]	-
	*
🖃 🖋 Tools	
Collect Dictionary	
EC-61131 Programming	
Network Configuration	
Command Analyser	
Workspace	
Workspace Communication Vitzards Tools	»

Figure 3-2 Page Navigator

- 4) Select desired device in device selection combo box.
- Doubleclick ¤IEC 61131 Programming¤. A list of sample projects will be displayed. Use this view as a "control center" to open projects and control program status (for details → Table 3-4).

Name	Path		
HelloWorld	C:\\\Samples\HelloWorld\HelloWorld.VAR	Open Programming Tool	
SimpleMotionSequence	C: \ \ \ \ \SimpleMotionSequence. VAR	Open Sample Project	
		Browse Project	
		Download Deservan	
		Erace Program	
			Program not Started at Bootup
		Help	Program Cold Start at Bootup
			Program Hot Start at Bootup

Figure 3-3 IEC 61131 Programming Windows

Programming

Programming Tool «OpenPCS»

Area	Button / Command	Effect
	Open Programming Tool	Launches external tool «OpenPCS»
Project	Open Sample Project	Opens an existing project
	Browse Project	Searches for/opens an existing IEC 61131 project (*.var)
	Download Program	Select and download an IEC 61131 project (*.var)
	Erase Program	Clear the IEC 61131 program on EPOS2 P
Program	Cold Start Starts the program from scratch by initializing varia values	Starts the program from scratch by initializing variables to their default values
Control	Warm Start	Restarts the program and restores the values
	Hot Start	Restarts the program at the position it was stopped and restores values
	Stop	Interrupts the program
Bootup Behavior	Bootup Behavior	Defines behaviour after power up

Table 3-4 IEC 61131 Programming Window – Commands and their Effect

6) Click ¤Open Programming Tool¤ to open external tool «OpenPCS».

3.1.2 Licence Key Configuration

In order to use the programming tool «OpenPCS», a valid licence key must be configured.

- 1) Open menu ¤Extras¤, then submenu ¤Tools¤ and click menu item ¤Licence¤.
- Click ¤Info¤ to check if valid license is available. If no license is registered, enter valid serial number and license key (→ "ReadMe.txt" in EPOS Studio directory).

	Name	Company
User EPOS	PUser	maxon motor ag
Serial Number	Licence C	lode

Figure 3-4 OpenPCS License Registration

If you find the license key out of date, download latest version of «EPOS Studio» from the Internet (for URLs \rightarrow chapter "2 Introduction" on page 2-9).

3.2 Connection Setup

1) Open menu ¤PLC¤, then click menu item ¤Connections¤.

Name	Driver	Settings	Code-Repository Path	New
Simulation	IPC	Smart Sim.exe single	C:\EIGENEDATEN\MYTE	Eda
				Euk
				Remove

Figure 3-5 Connection Setup

- 2) Look for one of the entries "ProxyEpos2_USB", "ProxyEpos2_RS232", "ProxyEpos2_CAN".
 - a) **If available**, click ¤Edit¤ and continue with step 5.
 - b) If not available, click ¤New¤ and continue with next step.
- Enter "ProxyEpos2" as name and add comments later on, this driver will enable parallel communication of «EPOS Studio» and programming tool «OpenPCS». Then click ¤OK¤.

Name		
ProxyEpos2		
Driver	Select	Settings
Comment		
Parallel communication I	EPUS Studio and OpenPCS	^
		-

Figure 3-6 Edit Connection

4) Select ¤ProxyEpos2^a to select driver. Then click ¤OK¤.

Select Driver			
- Available Drivers			
Available Diffets	IPC	ProxyEpos	Nane Nane Nane Nane Nane Nane Nane Nane
			Divergionalistic active of the original section of the

Figure 3-7 Select Driver

Programming Connection Setup

5) Select communication settings (for details → Table 3-5). Then click ¤OK¤.

Figure 3-8 Connection Settings (USB, RS232, CANopen)

Area	Button / Command	Effect			
Communi- cation	Protocol	Communication Protocol Stack to be used. Range: MAXON SERIAL V2, CANopen			
	Interface	Communication Interface to be used. Range: USB, RS232, IXXAT, National Instruments, Vector			
	Port	Communication Port to be used. Range: USBx, COMx, CANx			
	Baudrate	Communication Baudrate to be used.			
	Timeout	Communication Timeout. Default: 500 ms			
CANopen Attributes	Node ID	Node Address for CANopen Communication. Range: Node 1127			

Table 3-5 Connection Settings – Commands

6) The connection entry has been added to the list and is available for selection. Click ¤Close¤ to close the window.

Figure 3-9 Connection Entry "ProxyEpos2"

3.3 Sample Project «HelloWorld»

The following chapters explain the standard procedure to write a program.

The procedure is described using an example of a very simple program without any motion control features. The intention of this program is only to visualize handling of the programming tool. Basically, the program counts up and down. When reaching the maximum value, the text "HelloWorld" will be written to the variable "Text".

For an example using motion control functionality → chapter "9.2 «SimpleMotionSequence»" on page 9-146.

PROGRAM Counter

```
VAR
```

```
UpCounting
                             : BOOL := TRUE;
         Count
                             : UINT := 0;
         CountMax
                             : UINT := 300;
         Text
                             : STRING;
END VAR
(*Update UpCounting*)
IF (Count = 0) THEN
        UpCounting := TRUE;
        Text := ` `;
END_IF;
IF (Count >= CountMax) THEN
        UpCounting
                             := FALSE;
        Text := `HelloWord`;
END IF;
(*Do Counting*)
IF (UpCounting) THEN
        Count := Count + 1;
ELSE
        Count := Count -1;
END_IF;
END PROGRAM
```

3.4 Creating New Project

- 1) Click menu ¤Project¤. Select menu item ¤New¤.
- 2) Select file type ¤maxon motor ag¤ and template ¤EPOS2 P Project¤.
- 3) Enter project name "HelloWorld", browse for location to store new project.
- 4) Click ¤OK¤ to create new project. It will contain a resource item containing configuration for the hardware module named "maxon motor EPOS2 P" and a network connection named "ProxyEpos2".

Create a new file		
File Type	Template	
- 🏭 infoteam Software	Ginb CEPOS P Project Project EPOS P Project EPOS P Project	
Project for target 'EPOS2 Name Hellow Location C:\MyD	provid irectory OK	Cancel

Figure 3-10 Create New Project

5) To view/edit resource specification, click menu ¤PLC¤, then menu item ¤Resource Properties¤.

ame Resource	
Options	Hardware Module
Enable Upload	maxon motor EPOS2 P 24/5 💌
I Include Library Blocks	Network Connection
Download Symbol Table	ProxyEpos2_USB
Optimization	
Download Symbol Table Optimization size only	ProxyEpos2_USB

Figure 3-11 Edit Resource Specifications

Programming Program Code

3.5 **Program Code**

3.5.1 Writing Program Code

1) Add a new program to the project: Click menu ¤File¤, then menu item ¤New¤ to open dialog.

Create a new file						×
File Type		Template				L
POU	am tion Block	ST Program	SFC Program (IL)	FBD Program	Ladder Program	CFC I (A4 F
Declarati Declarati Resource Projects Other	ons Is	IL Program	SFC Program (ST)	FBD Program (8 Columns)	CFC Program (A4 Lands	CFC I (A3 F
Deserve in Press		•	III			Þ
Program in Struct	ured l'ext'					
) Name	Counter					1
Location	C:\MyDirecto	ry\Hello\v/orld\		1		
			0	к	Cancel	

Figure 3-12 Create Program File

- 2) Select file type ¤Program¤ from directory "POU" (Program Organization Unit):
 - a) Choose preferred programming language for your program in following example "Structured Text".
 - b) Enter name "Counter" and click ¤OK¤.
- 3) You will be asked whether or not you wish to add program item "Counter" to the active resource. Click ¤Yes¤.

infoteam OpenPCS		83
Do you like to add	"Counter" to the acti	ve resource?
	Yes	No

Figure 3-13 Add to active Resource

- 4) Configure configuration of program "Counter":
 - a) Open tab ¤Resources¤, select task item ¤Counter¤ and open properties via context menu (right click).
 - b) Select task type ¤Timer¤ and set time to 10 ms.

rogram Name	Task Type
Counter	Timer
Options	Optimization
Priority	1 resource defaults
Time [ms]	0 ÷
Interrupt	¥
	OK Cancel

Figure 3-14

Programming Program Code

- 5) Now, you are ready to start programming:
 - a) Open program item ¤Counter.ST¤.

Figure 3-15 Project HelloWorld

b) Enter variable declaration.

VAR_EXTERNAL		
END_VAR		
VAR_GLOBAL		
END_VAR		
VAR		
UpCounting	: BOOL := TRUE;	
Count	: UINT := 0;	
CountMax	: UINT := 300;	
Text	: STRING;	
END_VAR		
		۱. ۲

Figure 3-16 Variable Declaration

c) Enter program code.

(*Update UpCounting*)	*
IF (Count = 0) THEN	
UpCounting := TRUE;	
Text := '';	
END IF;	
IF (Count >= CountMax) THEN	
UpCounting := FALSE;	
Text := 'HelloWorld';	
END_IF;	=
(*Do Counting*)	
IF (UpCounting) THEN	
Count := Count + 1;	
ELSE	
Count := Count - 1;	
END_IF;	
	-
< <u></u>	•

Figure 3-17 Program Code

 Verify correct implementation: Click menu ¤File¤, then select menu item ¤Check Syntax¤.

3.5.2 Compiling and executing Program Code

 After code implementation, the program must be compiled: Click menu ¤PLC¤, then select menu item ¤Build Active Resource¤. The following logging output will be displayed.

Figure 3-18 Output Window

- 2) In order to download the program code, an online connection must be established:
 - a) Click menu ¤PLC¤, then select menu item ¤Online¤.
 - b) If new code is detected, you will be asked whether or not you wish to download the current resource. Click ¤Yes¤ to update the program in EPOS2 P.

💷 OpenP	CS Online-Server 3	32	23
?	The resource on t Would you like to	the PLC is not up to di o download the currer	ate. It resource?
		Yes	No

Figure 3-19 Download new Code

3) Click menu ¤PLC¤, then select menu item ¤Cold Start¤ to start downloaded code.

Figure 3-20 Cold Start

3.5.3 Debugging Program Code

- 1) Add a watch variable to the "Debug" window:
 - a) Open tab ¤Resources¤ in the project window.
 - b) Open tree view of task ¤COUNTER¤ and select variable ¤COUNT¤.
 - c) Select command ¤Add To Watchlist¤ from context menu. The variable "COUNT" will now be added to the "Debug" window.

Instancepath	Name	Value	Туре	Address	Force	Comment
COUNTER	TEXT	<empty></empty>	STRING			
COUNTER	COUNTMAX	300	UINT			
COUNTER	UPCOUNTING	TRUE	BOOL			
COUNTER	COUNT	0	UINT			
OPC Variables Wa	tchist: Resource WI					

Figure 3-21 "Debug" Window

- 2) Repeat above procedure for variables "UPCOUNTING" and "COUNTMAX".
- 3) For a step-by-step program debugging add a breakpoint to the program code:
 - a) Position mouse cursor to the line you wish to add the breakpoint.
 - b) Click menu ¤PLC¤, then submenu ¤Breakpoint¤ and select menu item ¤Toggle¤. The program will then stop at the breakpoint.

(*Update UpCounting*)	~
IF (Count = 0) THEN	
UpCounting := TRUE;	
Text := '';	
END_IF;	
IF (Count >= CountMax) THEN	=
UpCounting := FALSE;	
Text := 'HelloWorld';	
END_IF;	
(*Do Counting*)	
IF (UpCounting) THEN	
Count := Count + 1;	
ELSE	
Count := Count - 1;	
END_IF;	
	-
<	•

Figure 3-22 Adding a "Breakpoint"

4) To delete a breakpoint, again toggle the breakpoint.

Programming Program Code

- 5) Continue program execution:
 - a) Click menu ¤PLC¤, then submenu ¤Breakpoint¤.
 - b) Select menu item ¤Go¤.

Figure 3-23

Continue Program Execution

4 **Project Settings**

The following chapter will explain functions of some project-specific settings that need to be performed during the programming process.

4.1 Resource Properties

In general, a resource is equivalent to a PLC or a micro controller. A resource definition consists of...

- name (for identification),
- · hardware description (i.e. information on properties of your PLC used by «OpenPCS»), and
- a connection name (i.e. information on type of communication between «OpenPCS» and the control system).

A resource maintains a list of tasks which will be run on the control system.

roject	* X
Resource	
COUNTER	
COUNT	
COUNTMAX	
TEXT	
UPCOUNTING	
٠ 🔲	
🖹 Files 🐘 Resources 🚺 Lib 💡 He	lp

Figure 4-24 Resource Pane

Project Settings Resource Properties

Edit Resource Properties

Right click to open context menu and select "Properties". A dialog box will be displayed permitting you to change the following properties (for details \rightarrow Table 4-6):

ame Resource	
Options Frable Upload Disclude Library Blocks Doptimization Size only	Hardware Module maxion motor EPOS2 P 24/5 Network Connection ProxyEpos2_US8

Figure 4-25

Resource Specifications Window

Control Element	Description
Hardware Module	Select the configuration file corresponding to the controller you are using. When using maxon hardware, the following modules will be available: • "maxon motor EPOS2 P 24/5" • "maxon motor EPOS P 24/5" • "maxon motor MCD EPOS P 60 W" If you wish to use Windows SmartSIM simulation, select "SmartSIM".
Network Connection	Select the communication connection to your resource. To communicate with maxon controllers, choose as follows: EPOS2 P 24/5: "ProxyEpos2" EPOS P 24/5: "ProxyEpos" MCD EPOS P 60 W: "ProxyEpos" To work with the PLC simulation of OpenPCS select "Simulation".
Options	Enable Upload: not supported Download Symbol Table: no effect
Optimization	OpenPCS supports optimization settings "speed", "size" and "normal". size only: compiler option to optimize the generated code in respect to its size speed only: compiler option to optimize the generated code in respect to speed normal: mix between size only and speed only
Table 4-6 Resource	ce Specifications Window – Control Elements

Remark

Bear in mind that full debugging is only possible with optimization option "size" only!

4.2 Task Properties

In general, a task is equivalent to a program. The definition of a task consists of...

- name,
- · information on the execution of the task, and
- POU of type PROGRAM that will be executed in this task.

4.2.1 Edit Task Properties

Right click to open context menu and select ¤Properties¤. A dialog box will be displayed permitting you to change the following properties.

Task Type

OpenPCS supports all three tasks types defined by IEC 61131-3.

rogram Name	Task Type
Counter	Cyclic 💌
Ontione	Cyclic
Priority 1	Interrupt resource defaults
Time [ms]	·
Interrupt	v

Figure 4-26 Task Type Window

Control Element	Description
Cyclic	Will be executed when no timer or interrupt tasks are ready to run. The priority (may be specified in task properties) will be interpreted as a cycle interleave (e.g. priority = 3 will have this task executed only every third cycle). No particular execution order is defined by OpenPCS amongst multiple cyclic tasks.
Timer	Will be executed every n milliseconds (n may be specified in task properties).
Interrupt	Will be executed as soon as the interrupt occurs to which they are linked to.
Table 4-7 Task T	ype Window – Control Elements

Optimization

OpenPCS supports optimization settings "speed", "size" and "normal".

rogram Name		Task Type	
Counter		Cyclic	-
Options		Optimization	
Priority	1÷	resource defaults	-
Time [ms]	1	normal	
	· ·	size only	
Interrupt	Ψ.	resource defaults	

Figure 4-27

Edit Task Specification – Optimization

Control Element	Description
resource defaults	Uses the optimization attributes of the resource.
size only	Compiler option to optimize the generated code in respect to its size.
speed only	Compiler option to optimize the generated code in respect to speed.
normal	Mix between size only and speed only.
Table 4-8 Edit	Task Specification – Optimization Control Elements

Remark

Bear in mind that full debugging is only possible with optimization option "size" only!

Interrupt

This task type is only executed at particular interrupt events. The type of the event is selected with the option Interrupt.

rogram Nari	e	Task Type
Sounter		Interrupt 💌
Options		Optimization
Priority	1	resource defaults
Fime [ms]	1	1
Interrupt	-]
	STARTUP	OK Canad
	ERROR	UN Cancel
	CANERR	

Figure 4-28 Edit Task Specification – Interrupt

Interrupt	Description
STARTUP	Task with type interrupt is executed once upon startup.
STOP	Task with type interrupt is executed once upon program stop.
ERROR	Task with type interrupt is executed once upon program error.
CANSYNC	Task with type interrupt is synchronized with CANopen SYNC.
CANERR	Task with type interrupt is synchronized with CANopen EMCY.
Table 4.0 Edit Tag	sk Specification Interrupt Control Elements

Table 4-9 Edit Task Specification – Interrupt Control Elements

Remark

- Interrupt Tasks "STARTUP", "STOP" and "ERROR" need typically more than one cycle to finish!
- Interrupt Task "CANSYNC": The interrupt source for this task is the CANopen SYNC Cycle, the task will never be called when the SYNC Master is not activated
- Interrupt Task "CANERR": The interrupt source for this task is the CANopen EMCY, this task is called once when a connected CANopen Slave reports a Error with CANopen EMCY.

4.3 Network Configuration

This chapter explains the configuration for both, Internal Network (CAN-I) and Slave Network (CAN-S). For the configuration of a Master Network (CAN-M) → separate document «EPOS2 P Supervisory Control Reference».

4.3.1	Overview
4.0.1	01011101

Network Configuration - EPOS2 P	[Node 1]	? 🗙
Network Selection	Master SYNC Master PDO Heartbeat Control EPOSP [Node 127]	
Slave Network CAN-S	Communication Settings	
Devices in Slave Network CAN-S E-2 EPOS2 P [Node 127] EPOS2 [Node 1]	Node ID Node 127 CAN Bitrate 1000000 Bit/s	
	Network Management Setting	
	Start NMT Master Master switches into state operational Start NMT Slaves Slaves are switched into state operational	
	DOOR rime 500 ms	
p	OK Apply Cancel He	tp

Figure 4-29 Network Configuration Overview

Control Element	Description
Network Selection	Display of all available networks.
Device Selection in Network CAN-S	Display of all available devices within the selected network.
Tabs	Display of a particular configuration view to define parameters and settings.

Table 4-10 Network Configuration Overview – Display Elements

Status	Icon	Description
Network Status	⊾ок	No error or warning in this network.
	Karning	There are warnings in this network. Check devices.
	Error	There are errors in this network. Check devices.
Device Status	🔎 ок	No error or warning in this device configuration.
	Warning	There are warnings in this device configuration. Check configuration tabs.
	K Error	There are errors in this device configuration. Check configuration tabs.

Table 4-11

Network Configuration Overview – Status & Icons

4.3.2 Master Configuration

For the master configuration, select the master item in the device selection. The master must be configured for all networks.

4.3.2.1 Tab "Master"

Allows definition of behavior of the master device.

	igo	
Network ID	Network 2	
Node ID	Node 127	
CAN Bitrate	1000000 Bit/s	
VMT Master	aster	EPOS2 P is in master mode Master switches into state operational
MMT Master	laster	EPOS2 P is in master mode Master switches into state operational
✓ NMT Master ✓ Start NMT M ✓ Start NMT M ✓ Start NMT SI	laster laves	EPOS2 P is in master mode Master switches into state operational Slaves are switched into state operational
Image: Image	laster laves	EPOS2 P is in master mode Master switches into state operational Slaves are switched into state operational
I MMT Master I Start NMT M I Start NMT SI Boot Time I Start All NMT	aster aves 500 ms T Slaves together	EPOS2 P is in master mode Master switches into state operational Slaves are switched into state operational Start all slaves together using Node ID 0

Figure 4-30 Tab "Master"

Area	Control Element	Description			
Communi-	Network ID	Communication Network ID of the corresponding network.			
cation	Node ID	Communication Node ID as a member of the corresponding network.			
Settings	CAN Bitrate	Communication Bitrate of the corresponding network.			
Network Management Setting	NMT Master	EPOS2 P is in master mode and is able to communicate with slaves. Default: checked			
	Start NMT Master	After bootup, the master is switching into NMT state operational. Default: checked			
	Start NMT Slaves	After bootup, the master is switching the slaves into NMT state operational. Default: checked			
	Boot Time	Time to wait before addressing slaves after reset. Default: 500 ms			
	NMT Slaves together	All slaves are starting at the same time using a broadcast service. Default: checked			

Table 4-12

Tab "Master" – Control Elements

4.3.2.2 Tab "SYNC Master"

Allows definition of behavior of the SYNC Master in the network. The SYNC Master must be active if any synchronous PDO is being configured.

	Sync Producer Active SYNC COB-ID Max Base Bus Load Cycle Time Window Length Max Counter Value Base Bus Load Peak Bus Load Show Netword	0x00000080 60 = 1 100000 0 0 0.0 0.0 0.0 ktnfos	μs μs γ ₆ γ ₆ γ ₆	
--	--	---	--	--

Figure 4-31 Tab "SYNC Master"

Area	Control Element	Description		
	Check box	Enable/disable the SYNC Master. Default: active		
	SYNC COB-ID	COB-ID of the SYNC CAN Frame. Default: 0x00000080		
	Max Base Bus Load	Recommended Maximum Base Bus Load. Default: 60%		
	Cycle Time	Cycle Time of the SYNC CAN Frame. Default: 100'000 us		
Sync	Window Length	Window for sending and receiving synchronous PDOs. Default: 50%		
Producer Active	Max Counter Value	Enable or disable sending a SYNC CAN Frame including data byte containing a counter value. Default: disabled		
	Base Bus Load	Calculated bus load containing CAN frames that are cyclically transmitted. Following CAN frames are included in calculation: SYNC, PDO sync, Heartbeat.		
	Peak Bus Load	Calculated bus load containing all CAN frames that are transmitted. Following CAN frames are included: SYNC, PDO sync, Heartbeat, PDO async. Note: Asynchronous PDOs are a potential risk for bus overload. Use "Inhibit Time" to limit the transmission rate.		
Table 4-13	Tab "SYNC Master" – Options and Defaults/Calculations			

Best Practice: How to reduce Bus Load

If bus load exceeds the maximum bus load, the transmission of CAN frames must be limited. Use one of the following actions to reduce the bus load.

Project Settings Network Configuration

Action	Object	Description / Effect
Increase CAN Bitrate	all	The CAN Bitrate can be increased up to 1Mbit/s. Consider the maximum allowed bitrate for your network length: Bitrate / Max. line length according to CiA 102: 1 Mbit/s / 25 m 800 kBit/s 50 m 500 kBit/s / 100 m 250 kBit/s / 250 m 125 kBit/s / 500 m 50 kBit/s / 1000 m 20 kBit/s / 2500 m
Increase Cycle Time	SYNC, PDO sync	The cycle time of the SYNC producer may be increased to reduce the bus load. Increasing the cycle time is reducing the update rate of network variables in your IEC 61131 program.
Increase Heartbeat Producer Time	Heartbeat	Increase the producer time of the heartbeat CAN frames. Increasing the producer time is reducing the reaction time to a broken CAN bus.
Increase Inhibit Time	PDO async	Increase the inhibit time of the asynchronous PDOs. Increasing the inhibit time is reducing the update rate of network variables in your IEC 61131 program.
Increase Cycle Time Increase Heartbeat Producer Time Increase Inhibit Time	all SYNC, PDO sync Heartbeat PDO async	500 kBit/s / 100 m 250 kBit/s / 250 m 125 kBit/s / 500 m 50 kBit/s / 1000 m 20 kBit/s / 2500 m The cycle time of the SYNC producer may be increased to reduce the bus load. Increasing the cycle time is reducing the update rate of network variables in your IEC 61131 program. Increase the producer time of the heartbeat CAN frames. Increasing the producer time is reducing the reaction time to a broken CAN bus. Increase the inhibit time of the asynchronous PDOs. Increasing the inhibit time is reducing the update rate of network variables in your IEC 61131 program.

 Table 4-14
 Tab "SYNC Master" – Best Practice

For more details click ¤Show Network Infos¤:

Cycle Time 1000 Window Length 5000 CAN Bitrate 1 MBi Base Bus Load 0.0 Peak Bus Load 13.2		10000 50000 1 MBit/ 0.0	s	ps Min Cycle Time µs Min Window Length % Max Base Bus Load		48 60.0	μs μs %
Туре	Objec	t	Count	Time/Cycle	Total	Time/Cycle	Load
Base	SYNC		1	46 µs	46 µs		0.0 %
Base	PDO s	ync	0	0 µs	0 µs		0.0 %
Base	Heart	beat	0	0 µs	0 µs		0.0 %
Peak	PDO a	isync	2	6599 µs	1319	9 µs	13.2 %
				Show Figure			

Figure 4-32 Network Info

Parameter	Description
Cycle Time	Configured Cycle Time.
Min Cycle Time	Min Cycle Time calculated based on the maximum base bus load.
Window Length	Configured Window Length.
Min Window Length	Minimum Window Length calculated based on the maximum base bus load.
CAN Bitrate	Configured CAN Bitrate.
Base Bus Load	Calculated bus load containing CAN frames that are cyclically transmitted. Consult the detailed load table for details on types of CAN frames that are included in the calculation .
Max Base Bus Load	Recommended Maximum Base Bus Load.
Peak Bus Load	Calculated bus load containing all CAN frames that are transmitted. Consult the detailed load table for details on types of CAN frames that are included in the calculation . Remark : Asynchronous PDOs are a potential risk for a bus overload. Use "Inhibit Time" to limit the transmission rate.
Table 4-15 Netw	vork Info – Parameters

Parameter	Description
Туре	Base : Bus load of this object is added to the base and peak bus load. Peak : Bus load of this object is added only to the peak bus load.
Object	Type of CAN frame transmitted.
Count	Number of CAN frames transmitted.
Time/Cycle	Time to transmit one CAN frame per cycle time. Remark: For the asynchronous PDOs a mean value is calculated based on the inhibit time of the asynchronous PDO.
Total Time/Cycle	Total time to transmit all CAN frames.
Load	Bus load caused by all objects of this type.
Table 4-16 Net	work Info – Table Columns

Click ¤Show Figure¤ to display timing diagram:

Figure 💌
Communication Cycle Time
Synchronous Window Length Window Length
Syric object Syrichronous PDOs Event-driven PDO
OK

Figure 4-33 Cycle Time

4.3.2.3 Tab "PDO"

Used to edit and change the PDO configuration of the Master Network.

Configuration of network variables automatically adds PDOs and PDO Mappings Make sure not to destroy the PDO configuration of a network variable!

I ransmit PDO	COB-ID	Transmission Type	Inhibit Time	Event Time
🖻 👼 TxPDO 1	0x000001FF	Asynchronous, on change	1.0 ms	0
U32 Process Output UINT32 -20)			
- 👼 TxPDO 2	0x000002FF	Asynchronous, on change	1.0 ms	0
		Terrare and a local Terrare		
Receive PDO	COB-ID	Transmission Type		
Receive PDO 🖻 🖉 RxPDO 1	COB-ID 0x0000027F	Asynchronous		
Receive PDO RxPDO 1 U16 Axis 0 Statusword	0x0000027F	Asynchronous		

Figure 4-34 Tab "PDO"

Area	Control Element	Description
	Transmit PDO Receive PDO	PDOs and mapped object of the PDO
	COB-ID	11-Bit Identifier used by the PDO
Table	Transmission Type	defines the transmission/reception character of a PDO
Columns	Inhibit Time	minimal transmission interval for asynchronous PDOs Note! An inhibit time of "0" (zero) represents a potential risk for bus overload!
	Event Timer	elapsed timer to trigger the asynchronous PDO transmission
	Add	to add a new Transmit/Receive PDO to the list Note! if inactive, no more PDOs can be added
Buttons	Edit	to change settings of an existing PDO
	Delete	to delete an existing PDO from the list

Table 4-17 Tab "PDO" – Functions

The dialog "Edit" displays the configuration options for Transmit and Receive PDOs.

						_		
PDO	TXPDO 1							
COB-ID	0x000001	FF						
Transmission Type	Asynchron	ious, on cha	nge			•		
Inhibit Time	1.0			ms				
EventTimer	0				Enable	d		
oping								
DO Mappable Objec	ts				Mapp	ed PDO Objects		
Object Name		Size	<u> </u>		No.	Mapped Object	Size	_ ^
Axis 0 Statusword		2 Bytes			1.	Process Output UINT32 -20	4 Bytes	
Axis 0 Modes of Ope	ration	1 Byte		1	2.			
Axis 1 Statusword		2 Bytes		>>	3.			
Axis 1 Modes of Ope	ration	1 Byte			4.			
Axis 2 Statusword		2 Bytes			5.			
Axis 2 Modes of Opt Axis 2 Statusword	auun	2 Byte			7			
Axis 3 Modes of One	ration	1 Bytes			8			
Avis 4 Statusword		2 Bytes		DEL	9			-
Axis 4 Modes of One	ration	1 Byte		A11	1.51			
Axis 5 Statusword		2 Bytes		ALL				
Axis 5 Modes of Ope	ration	1 Byte			4 of 8	Bytes mapped		
Axis 6 Statusword		2 Bytes	Ŧ					

Figure 4-35 Tab "PDO" – Edit Dialog

Area	Control Element	Description		
	PDO	name of PDO being configured		
	COB-ID	11-Bit Identifier used by the PDO		
Parameters	Transmission Type	defines the transmission/reception character of a PDO Asynchronous: PDO transmission is triggered by value change or event timer Asynchronous RTR only: PDO can be requested by a remote transfer request Synchronous: PDO transmission is triggered by the Sync Master		
	Inhibit Time	minimal transmission interval for asynchronous PDOs Note! An inhibit time of "0" (zero) represents a potential risk for bus overload!		
	Event Timer	elapsed timer to trigger the asynchronous PDO transmission		
Manaina	PDO Mappable Objects	list of all objects that can be mapped to a PDO		
wapping	Mapped PDO Objects	list of all objects that are mapped to the PDO		
	>>	to add an object to the PDO mapping		
Buttons	DEL	to delete an object from the PDO mapping		
	ALL	to delete all objects from the PDO mapping		
Table 4-18	Tab "PDO" – Edit Dial	og Functions		

4.3.2.4 Tab "Heartbeat Control"

Allows definition of the error control behavior of the master. Activate the heartbeat producer to monitor a breakdown of the master by the slave devices. Activate the heartbeat consumer to monitor a breakdown of a slave device.

V Produce Hea	rtbeat		Consumed by		
Producer Time	2000		Device	Producer	Consumer
Tolerance	500	ms	EPOS2 [Node 1]	2000 ms	2500 ms
Consume He	artbeat	-	Produced by Device	Producer	Consumer
Consume He Consumer Time Tolerance	artbeat	ms ms	Produced by Device EPOS2 [Node 1]	Producer 0 ms	Consumer 0 ms

Figure 4-36 Tab "Heartbeat Control"

Option	Default	Description
	Producer Heartbeat	Enable or disable the heartbeat producer. Default: disabled
	Producer Time	Transmission rate of the heartbeat CAN frame. Default: 2000 ms
Produce Heartbeat	Tolerance	Tolerance time for the slave heartbeat consumer. The consumer time must always be higher than the producer time. A high bus load can delay the transmission of a heartbeat CAN frame. Default: 500 ms
Consumed by	Consumed by	Device: In case of a breakdown of the master (heartbeat producer), this device is going to error state. Producer: Heartbeat producer time Consumer: Heartbeat consumer time Default: disabled
	Consumer Heartbeat	Enable or disable the heartbeat consumer. Default: disabled
	Consumer Time	Expected transmission rate of the heartbeat CAN frame. Default: 2000 ms
Consume Heartbeat	Tolerance	Tolerance time for the master heartbeat consumer. The consumer time must always be higher than the producer time. A high bus load can delay the transmission of a heartbeat CAN frame. Default: 500 ms
	Produced by	Device: In case of a breakdown of the master (heartbeat consumer), this device is going to error state. Producer: Heartbeat producer time Consumer: Heartbeat consumer time Default: disabled
T 1 1 4 40	T 1 (11) 11 1 0 1	

Table 4-19 Tab "Heartbeat Control" – Control Elements

4.3.3 Slave Configuration

For slave configuration, select the network and one of the slave items in the device selection.

4.3.3.1 Tab "Slave"

Allows to define the behavior of the slave device.

Communication Set	tings	
Network ID	Network 2	
Node ID	Node 1	
CAN Bitrate	1000000 Bit/s	
V Boot Slave	r Slave	Slave will be booted at program start Error is reported if slave can't be booted
Axis Number	Axis 2	Used for motion control Library

Figure 4-37 Tab "Slave"

Area	Control Element	Description
Communi-	Network ID	Communication Network ID of the corresponding network.
cation	Node ID	Communication Node ID as a member of the corresponding network.
Settings	CAN Bitrate	Communication Bitrate of the corresponding network.
NMT Slave Boot Slave Mandatory Slave Management Setting	NMT Slave	The slave is available in CAN network as a NMT slave. Default: checked
	Boot Slave	The slave will be booted at the program start. Default: checked
	Mandatory Slave	Error is reported if slave can't be booted. Default: checked
	Axis Number	Axis Number is used by all motion control function blocks. The default value is defined by the Node ID. Note: If no axis number is defined, the motion control function blocks can't be used. Default: Axis X
	Axis Type	Axis Type is used by all motion control function blocks. Note: If the axis type is not defined as "Standard", the motion control function blocks can't be used. Default: standard

Table 4-20

Tab "Slave" - Control Elements

4.3.3.2 Tab "Network Variables"

Allows to setup network variables for the IEC 61131 program.

Network Variables: EPOS2 P [Node 127] -	-> EPOS2 [Intern	al]					
Network Variable	Address	Туре	Producer Object	TxPDO	Bus	RxPDO	Consumer Object
U16 Axis0_qwControlword	%QW1.3.0.0	UINT	Process Output UINT16 -1	TxPDO 1	>	RxPDO 1	Controlword
I32 Axis0_qdPositionModeSettingValue	%QD1.4.0.0	DINT	Process Output INT32 -1	TxPDO 1	>	RxPDO 1	Position Mode Setting Value
U16 Axis0_qwDigitalOutputState	%QW1.3.2.0	UINT	Process Output UINT 16 -2	TXPDO 1	>	RxPDO 1	Digital Output State
					Add	Natwork Va	riable Delete Network Variable
Network Variables: EPOS2 P [Node 127] <	< EPOS2 [Intern	al]	Consumer Object	Putto	Add	Network Va	riable Delete Network Variable
Network Variables: EPOS2 P [Node 127] < Network Variable	< EPOS2 [Intern Address	al] Type	Consumer Object	RxPD0	Add	Network Va	riable Delete Network Variable
Network Variables: EPOS2 P [Node 127] - Network Variable U16 Axis0 _iwStatusword 32 _ Axis0 _iwStatusword	< EPOS2 [Intern Address %IW1.3.0.0 %/ID1.4.0.0	al] Type UINT DINT	Consumer Object Process Input UINT 16 - 1 Process Input IUNT 2 - 1	RxPDO RxPDO 1 RxPDO 2	Add Bus <	Network Va TxPDO TxPDO 1 TxPDO 2	Delete Network Variable Producer Object Statusword Position Achial Value
Network Variables: EPOS2 P [Node 127] - Network Variable U16 Axeo_iwStatusword 132 Axeo_idFostionActualValue U16 Axeo_iwDigitalInputFunctionalitie	< EPOS2 [Intern Address %IW1.3.0.0 %ID1.4.0.0 %IW1.3.2.0	al] Type UINT DINT UINT	Consumer Object Process Input UINT 16 -1 Process Input UINT 16 -2	RxPDO RxPDO 1 RxPDO 2 RxPDO 1	Add Bus < <	Network Va TxPDO TxPDO 1 TxPDO 2 TxPDO 1	Delete Network Variable Producer Object Statusword Postion Actual Value Digital Input Functionalities St
Network Variables: EPOS2 P [Node 127] - Network Variable U16 Axido JwStatusword S2 Axido JwStatusword S3 Axido JwStatinputFunctionalitie	< EPOS2 [Intern Address %IW1.3.0.0 %ID1.4.0.0 %IW1.3.2.0	al) Type UINT DINT UINT	Consumer Object Proces Input UINT 16 - 1 Process Input UINT 16 - 2	RxPDO RxPDO 1 RxPDO 2 RxPDO 1	Add Bus < <	Network Va TxPDO TxPDO 1 TxPDO 2 TxPDO 1	Delete Network Variable Producer Object Statusword Position Actual Value Digital Input Functionalities St

Figure 4-38 Tab "Network Variables"

Network Variables: EPOS2 P [Node 1] → EPOS [Internal]

Displays all configured network variables sent from the master to the slave.

Description
Name of network variable to be used in IEC 61131 program. The network variables can be exported to a network variable file (*.poe).
Object in object dictionary of the master. This object is mapped to the transmit PDO.
Configured transmit PDO to send data to the slave.
Direction of the data exchange.
Configured receive PDO to receive data from the master.
Object in object dictionary of the slave. This object is mapped to the receive PDO.

Table 4-21 Network Variables: EPOS2 P [Node 1] to EPOS [Internal]

Network Variables: EPOS2 P [Node 1] ← EPOS [Internal]

Displays all configured network variables sent from the slave to the master.

Column	Description
Network Variable	Name of network variable to be used in IEC 61131 program. The network variables can be exported to a network variable file (*.poe).
Consumer Object	Object in object dictionary of the master. This object is mapped to the receive PDO.
RxPDO	Configured receive PDO to receive data from the slave.
Bus	Direction of the data exchange.
TxPDO	Configured transmit PDO to send data to the master.
Producer Object	Object in object dictionary of the slave. This object is mapped to the transmit PDO.
Table 4-22 N	etwork Variables: EPOS2 P [Node 1] from EPOS [Internal]
Control Element	Description
----------------------------	--
Add Network Variable	Adds a network variable
Delete Network Variable	Deletes the selected network variable.
Table 4-23 Tab) "Network Variables" – Control Elements

Add Network Variable

Click ¤Add Network Variable¤ button.

onsumer EPOS2 [Ir	nternal]	
Consumer Object	High Resolution Time Stamp	•
oducer EPOS2 P [] Network Variable Type	Node 127] Axis0_qdHighResolutionTimeStamp UDINT	-
	Process Output LIINT 32 -1	-

Figure 4-39 Add Network Variable

Direction	Parameter	Description
Master → Slave	Consumer Object	Object to be written by network variable.
	Network Variable	Name of network variable to be used in IEC 61131 program.
	Туре	IEC 61131 type process variable – if "BOOL", bit number is required.
	Producer Object	Process object of master.
Slave → Master	Producer Object	Object to be read by network variable.
	Network Variable	Name of network variable to be used in IEC 61131 program.
	Туре	IEC 61131 type process variable – if "BOOL", bit number is required.
	Consumer Object	Process object of master.

Table 4-24 Add Network Variable – Parameters

Project Settings Network Configuration

Edit PDO Links

PDO links are automatically created when adding a new network variable. Edit them using right click on

```
Edit PDO Links
```

The dialog "Edit PDO Links" shows all PDOs linked between the master and the slave device. The configuration of the PDO can be changed using this dialog.

	/PDO 1	PDO Link
U16 Process C	lutput UINT16 -1> Controlword	New
	utput INT32 -1> Position Mode Setting Value	Delete
	addar og vir 10-2 ->> bigraf og dar state	Lock
		Mapped Objects
		Move To
		Move Up
		Move Down
ommunication Parame	eter	
COB-ID	0x400001FF	
Transmission Type	Asynchronous, on change	
Inhibit Time	1.0 ms	OK
	-	

Figure 4-40 Edit PDO Links

Communication Parameter

Parameter	Description
COB-ID	COB-ID of the linked PDOs.
Transmission Type	Synchronous: The PDO transmission is triggered by the Sync Master. Asynchronous RTR only: Do not use for network variables. Asynchronous on event: The PDO transmission is triggered by the IEC-61131 FB "CAN_SetTxPdoEvent". Asynchronous on change: The PDO transmission is triggered by a value change.
Inhibit Time	Minimal transmission interval for asynchronous PDOs. Note: An inhibit time of zero is a potential risk for a bus overload!
Event Timer	The asynchronous PDO transmission is triggered by an elapsed event timer.
Table 4-25 Edit	PDO Links – Communication Parameter

PDO Link

Control Element	Description
New	Create a new PDO link between the master and slave devices.
Delete	Delete an existing PDO link between the master and slave device. Only an empty PDO link can be deleted. Remove first the mapped objects.
Lock / Unlock	Lock or unlock a PDO link. A locked PDO can not be used by any other network variable.
Table 4-26 Ec	lit PDO Links – PDO Link

Mapped Objects

Control Element	Description
Move To	Move the selected objects to another PDO link.
Move Up	Move the selected objects up in the list of mapped objects.
Move Down	Move the selected object down in the list of mapped objects.
T.L. 4 07	

Table 4-27 Edit PDO Links – Mapped Objects

Lock/Unlock PDOs

Any PDO of the master or slave devices can be locked or unlocked. A locked PDO can't be used by any other network variables.

Right click 🗳 Lock & Unlock PDOs	
Lock & Unlock PDOs	? 💌
POS2P [Node 127] POS2 Pos2 [Internal] POS 1 POS0 1 POS0 2 POS0 2 POS0 3 POS0 3 POS0 4 POS0 4 POS0 4	Lock Unlock
	Cancel

Figure 4-41 Lo

Lock/unlock PDOs

Icon	Description
Locked PDO	Cannot be used by any other network variables.
Unlocked transmit PDO	Can be used by new network variables.
C Unlocked receive PDO	Can be used by new network variables.

Table 4-28 Lock or Unlock PDOs – Icons

Reset PDOs

To create a good starting point for a network variable definition, the PDO configuration can be reset.

Right click Reset PDOs	
Reset PDOs	
Select the PDOs you want to reset	
Reset unlinked PDOs	
C Reset linked PDOs between CAN-I and EPOS2 [Internal] C Reset all PDOs in Network	
OK Cancel	
Figure 4-42 Reset PDOs	
1 Iguie 4-42 Nesel 1 DOs	

Option	Description
Reset unlinked PDOs	All active PDOs not linked to any known devices in the network will be deactivated. Inactive PDOs are then available for new network variables.
Reset linked PDOs between EPOS2 P and EPOS	All active and linked PDOs between two devices are reset. Use this option to clear the PDO configuration of two devices. All network variables are deleted.
Reset all PDOs in network	All active PDOs in a network are reset.
Table 4-29 Res	et PDOs – Options

Show Network Variable File

The declaration of the network variables for the IEC 61131 program are shown.

Right click Show Network Variable File

Save Network Variable File

The declarations of the network variables for the IEC 61131 program are saved to a file (*.poe). This file can be included in a IEC 61131 program.

Right click 🖬 Save Network Variable File

Print Network Variable File

The declarations of the network variables for the IEC 61131 program are printed.

ight click 🕒 Print Network Variable Fi	
0	
AR GLOBAL	
(* Internal Network CAN-I *)	
Axis0_qwControlword	AT %QW1.3.0.0: UINT;
Axis0 qdPositionModeSettingValue	AT %QD1.4.0.0: DINT;
Axis0_qwDigitalOutputState_Bit1	AT %QX1.3.2.1: BOOL;
Axis0 iwStatusword	AT %IW1.3.0.0: UINT;
Axis0 idPositionActualValue	AT %ID1.4.0.0: DINT;
Axis0_iwDigitalInputFunctionalitiesState_Bit4	AT %IX1.3.2.4: BOOL;
END VAR	

4.3.3.3 Tab "PDO"

Used to edit and change the PDO configuration of the Master Network.

Configuration of network variables automatically adds PDOs and PDO Mappings Make sure not to destroy the PDO configuration of a network variable!

Fransmit PDO	COB-ID	Transmission Type	Inhibit Time	Event Timer
🖻 👼 TxPDO 1	0x400001FF	Asynchronous, on change	1.0 ms	0
U16 Process Output UINT16 -1				
I32 Process Output INT32 -1				
U16 Process Output UINT16 -2				
Add			E	idit Delete
Add Receive PDO	COB-ID	Transmission Type	E	dit Delete
Add Receive PDO 日 圖 RxPDO 1	COB-ID 0x00000181	Transmission Type Asynchronous	E	dit Delete
Add Receive PDO G @ RxPDO 1 U16 Axis 0 Statusword	COB-ID 0x00000181	Transmission Type Asynchronous	E	dit Delete
Add Receive PDO E @ RexPDO 1 U16 Axis 0 Statusword U8 Axis 0 Modes of Operation	COB-ID 0x00000181	Transmission Type Asynchronous	E	dt Delete
Add Receive PDO Re	COB-ID 0x00000181	Transmission Type Asynchronous	E	dk Delete
Add Receive PDO PROPD 1 U16 Axis 0 Statusword U8 Axis 0 Modes of Operation U16 Process Input UINT16 -1 U16 Process Input UINT16 -2	COB-ID 0x00000181	Transmission Type Asynchronous	E	dk Delete
Add Receive PDO Receive PDO Receive PDO UI6 Axis 0 Statusword UI6 Axis 0 Nodes of Operation UI6 Process Input UINTI6 -1 UI6 Process Input UINTI6 -2 RePDO 2	COB-ID 0x00000181 0x4000037F	Transmission Type Asynchronous Asynchronous	E	dk Delete

Figure 4-44 Tab "PDO"

Area	Control Element	Description
	Transmit PDO Receive PDO	PDOs and mapped object of the PDO
	COB-ID	11-Bit Identifier used by the PDO
Table	Transmission Type	defines the transmission/reception character of a PDO
Columns	Inhibit Time	minimal transmission interval for asynchronous PDOs Note! An inhibit time of "0" (zero) represents a potential risk for bus overload!
	Event Timer	elapsed timer to trigger the asynchronous PDO transmission
	Add	to add a new Transmit/Receive PDO to the list Note! if inactive, no more PDOs can be added
Buttons	Edit	to change settings of an existing PDO
	Delete	to delete an existing PDO from the list
Table 4-30	Tab "PDO" – Function	S

Project Settings Network Configuration

The o	dialog	"Fdit"	displays	the	configuration	options f	or ⁻	Transmit	and	Receive	PDOs.
					eega.a.e.	000000	•.				

	TxPDO 2				_	_	_		
-00	1								
COB-ID	0x000002F	F				_			
Transmission Type	Asynchrone	ous, on cha	nge		_		•		
Inhibit Time	1.0		_	ms					
Event Timer	100			ms	I▼ E	inable	đ		
Object Name		Size				No.	Mapped Object	Size	
CONFERENCE		1 3128	A			1.1100	T Mapped Object	1.517P	
Axis 20 Statusword		2 Puter				1	Process Input INTR -1	1 Puto	- 6
Axis 30 Statusword Axis 30 Modes of On	eration	2 Bytes 1 Byte				1.	Process Input INT8 -1	1 Byte	Ō
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword	eration	2 Bytes 1 Byte 2 Bytes			_	1.	Process Input INT8 -1	1 Byte	Ō
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Modes of Op	eration	2 Bytes 1 Byte 2 Bytes 1 Byte		>	·>	1. 2. 3. 4.	Process Input INT8 -1	1 Byte	Ō
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Modes of Op Process Input INT8 -	eration eration	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte		>	•>	1. 2. 3. 4. 5.	Process Input INT8 -1	1 Byte	
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Modes of Op Process Input INT8 - Process Input INT8 -	eration eration 1	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte		>	~>	1. 2. 3. 4. 5. 6.	Process Input INT8 -1	1 Byte	
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Modes of Op Process Input INT8 - Process Input INT8 - Process Input INT8 -	eration eration -1 -2 -3	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte		>	·>	1. 2. 3. 4. 5. 6. 7.	Process Input INT8 -1	1 Byte	
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Modes of Op Process Input INT8 - Process Input INT8 - Process Input INT8 - Process Input INT8 -	eration 1 2 3 4	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte		>	·>	1. 2. 3. 4. 5. 6. 7. 8.	Process Input INT8 -1	1 Byte	
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Modes of Op Process Input INT8 - Process Input INT8 - Process Input INT8 - Process Input INT8 - Process Input INT8 -	eration 1 2 3 4 1-1	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte		>	•>	1. 2. 3. 4. 5. 6. 7. 8. 9.	Process Input INT8 -1	1 Byte	
Axis 30 Statusword Axis 31 Statusword Axis 31 Statusword Axis 31 Nodes of Op Process Input INT8 - Process Input INT8 - Process Input INT8 Process Input UNT8 Process Input UNT8	eration -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -2 -3 -1 -2 -3 -1 -2 -3 -1 -2 -3 -1 -1 -2 -3 -1 -1 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -3 -2 -3 -3 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte		D	•>	1. 2. 3. 4. 5. 6. 7. 8. 9.	Process Input INT8 -1	1 Byte	-
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Mates of Op Process Input INT8 - Process Input INT8 - Process Input INT8 - Process Input INT8 - Process Input UINT8 Process Input UINT8 Process Input UINT8	eration 1 2 3 4 -1 -2 -3 -1 -2 -3 -1 -2 -3 -1 -2 -3 -1 -2 -3 -1 -2 -3 -1 -2 -3 -1 -2 -3 -3 -1 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte		D		1. 2. 3. 4. 5. 6. 7. 8. 9.	Process Input INT8 -1	1 Byte	-
Axis 30 Statusword Axis 31 Statusword Axis 31 Mades of Op Axis 31 Mades of Op Process Input INT8 - Process Input INT8 - Process Input UINT8 Process Input UINT8 Process Input UINT8 Process Input UINT8 Process Input UINT8	eration 1 2 3 4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte		D		1. 2. 3. 4. 5. 6. 7. 8. 9.	Process Input INT8 -1 Bytes mapped	1 Byte	
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Modes of Op Process Input INT8 - Process Input INT8 Process Input INT8 Process Input UINT8 Process Input UINT8 Process Input UINT8 Process Input UINT8 Process Input UINT8	eration -1 -2 -3 -4 -1 -2 -3 -4 -1	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 2 Bytes		D	·> EL	1. 2. 3. 4. 5. 6. 7. 8. 9.	Process Input INT8 -1 Bytes mapped	1 Byte	
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Statusword Axis 31 Modes of Op Process Input INT8 - Process Input INT8 Process Input UINT8 Process Input UINT8 Process Input UINT8 Process Input UINT8 Process Input UINT8	eration -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -1 -2 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 2 Bytes		D	> EL	1. 2. 3. 4. 5. 6. 7. 8. 9.	Process Input INT8 -1 Process Input INT8 -1 Bytes mapped	1 Byte	
Axis 30 Statusword Axis 30 Modes of Op Axis 31 Statusword Axis 31 Statusword Axis 31 Modes of Op Process Input INT3 Process Input INT3 Process Input UNT3 Process Input UNT3 Process Input UNT3 Process Input UNT3	eration -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -1 -2 -3 -3 -4 -1 -2 -3 -3 -4 -1 -2 -3 -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	2 Bytes 1 Byte 2 Bytes 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 2 Bytes		D	⇒ €L	1. 2. 3. 4. 5. 6. 7. 8. 9.	Process Input INT8 -1 Bytes mapped	1 Byte	-

Figure 4-45 Tab "PDO" – Edit Dialog

Area	Control Element	Description
	PDO	name of PDO being configured
	COB-ID	11-Bit Identifier used by the PDO
Parameters	Transmission Type	defines the transmission/reception character of a PDO Asynchronous: PDO transmission is triggered by value change or event timer Asynchronous RTR only: PDO can be requested by a remote transfer request Synchronous: PDO transmission is triggered by the Sync Master
	Inhibit Time	minimal transmission interval for asynchronous PDOs Note! An inhibit time of "0" (zero) represents a potential risk for bus overload!
	Event Timer	elapsed timer to trigger the asynchronous PDO transmission
Manning	PDO Mappable Objects	list of all objects that can be mapped to a PDO
wapping	Mapped PDO Objects	list of all objects that are mapped to the PDO
	>>	to add an object to the PDO mapping
Buttons	DEL	to delete an object from the PDO mapping
	ALL	to delete all objects from the PDO mapping
Table 4-31	Tab "PDO" – Edit Dial	og Functions

4.3.3.4 Tab "Heartbeat Control"

Allows definition of error control behavior of a slave device. Activate the heartbeat producer to monitor a breakdown of the slave by any other devices. Activate the heartbeat consumer to monitor a breakdown of any other device.

Produce Hea	artbeat		Consumed by		
Deadurer Tree	0000	_	Device	Producer Time	Consumer Time
Tolerance	500	ms	EPOS2 P [Node 127]	2000 ms	2500 ms
reichande	1.000		-		
Consume He	eartbeat		Produced by		
Consume He	eartbeat		Produced by Device	Producer Time	Consumer Time
Consume He	2500	ms	Produced by Device POS2 P [Node 127]	Producer Time 2000 ms	Consumer Time 2500 ms
Consume He Consumer Time Tolerance	2500 500	ms ms	Produced by Device POS2 P [Node 127]	Producer Time 2000 ms	Consumer Time
Consume He Consumer Time Tolerance	2500 500	ms ms	Produced by Device POS2 P [Node 127]	Producer Time 2000 ms	Consumer Time 2500 ms
Consume He Consumer Time Tolerance	2500 500	ms ms	Produced by Device POS2 P [Node 127]	Producer Time 2000 ms	Consumer Time 2500 ms

Figure 4-46 Tab "Heartbeat Control"

Area	Control Element	Description
	Producer Heartbeat	Enable or disable the heartbeat producer. Default: disabled
	Producer Time	Transmission rate of the heartbeat CAN frame. Default: 2000 ms
Produce Heartbeat	Tolerance	Tolerance time for the slave heartbeat consumer. The consumer time must always be higher than the producer time. A high bus load can delay the transmission of a heartbeat CAN frame. Default: 500 ms
	Consumed by	Device: In case of a breakdown of the master (heartbeat producer), this device is going to error state. Producer: Heartbeat producer time Consumer: Heartbeat consumer time Default: disabled
	Consumer Heartbeat	Enable or disable the heartbeat consumer. Default: disabled
	Consumer Time	Expected transmission rate of the heartbeat CAN frame. Default: 2000 ms
Consume Heartbeat	Tolerance	Tolerance time for the master heartbeat consumer. The consumer time must always be higher than the producer time. A high bus load can delay the transmission of a heartbeat CAN frame. Default: 500 ms
	Produced by	Device: In case of a breakdown of the master (heartbeat consumer), this device is going to error state. Producer: Heartbeat producer time Consumer: Heartbeat consumer time Default: disabled
Table 4-32	Tab "Heartbeat Contro	ol" – Control Elements

Project Settings Network Configuration

4.3.3.5 Tab "Bootup"

Allows definition of various bootup configuration checks. During configuration, the identification values of the slave device are stored in the master. During bootup procedure the master is checking if the correct slave device is connected to the CAN bus. If a bootup check fails the IEC 61131 program will not be started.

Bootup Check	Status	EPOS2 P [Node 127]	EPOS2 [Node 1]
Device Type	Valid	0x00020192	0x00020192
Vendor Id	Valid	0x000000FB	0x000000FB
Product Code	Valid	0x62200000	0x62200000
Revision Number	Valid	0x21230000	0x21230000
Serial Number	Valid	0x79002226	0x79002226
Configuration Date Time	Valid	13.09.2012 14:55:16	13.09.2012 14:55:16
Update Bootup Checks			

Figure 4-47 Tab "Bootup"

Area	Control Element	Description
	Device Type	Contains information about the device type. The lower 16-bit describes the CANopen device profile (i.e. 0x0192 = CiA 402). Default: disabled
	Vendor ID	Contains a unique value allocated to each manufacturer (i.e. 0x000000FB = maxon motor ag). Default: disabled
Bootup	Product Code	Contains a specific device version (i.e. 0x62100000 = Hardware Version EPOS 24/5). Default: disabled
Check	Revision Number	Contains a specific firmware version (i.e. 0x20320000 = Software Version EPOS 24/5). Default: disabled
	Serial Number	Contains a unique value allocated to each device (i.e. 0x62100000 = Hardware Version EPOS 24/5). Default: disabled
	Configuration Date Time	Contains information about the last change of the configuration settings. Default: disabled

Table 4-33 Tab "Bootup" – Options and Defaults Consumer

4.3.4 Minimal Network Configuration

In order to use a motion control axis in a IEC 61131 program, the following configuration steps will be necessary.

1) Step 1: Create Project in EPOS Studio

- a) Select menu item ¤New Project¤ in menu "File".
- b) Select an EPOS2 P project template and click ¤Next¤.
- c) Enter project name, destination directory and click ¤Finish¤.

2) Step 2: Scan the Network Topology

- a) Change to tab ¤Communication¤ in navigation window.
- b) Select icon for CAN network and execute command "Scanning Devices" in context menu.
- c) Enter scanning settings.
- d) Start Scanning.
- e) Click ¤OK¤ to close dialog "Scanning Devices".
- f) Connect all new scanned devices.
- 3) Step 3: Open the Tool "Network Configuration"
 - a) Change to tab ¤Tools¤ in navigation window.
 - b) Select device ¤EPOS2 P¤ in device selection.
 - c) Click item ¤Network Configuration¤ to open tool.

4) Step 4: Minimal Master Configuration

- a) Select master device ¤EPOS2 P¤ in device selection.
- b) Select tab "Master" and configure following options:
 - NMT Master: Enabled
 - Start NMT Master: Enabled
 - Start NMT Slaves: Enabled
 - Boot Time: 500 ms
 - Start All NMT Slaves together: Enabled
- c) Select tab "SYNC Master" and disable Sync Producer.
- d) Select tab "Heartbeat Control" and disable Heartbeat Producer.

5) Step 5: Minimal Slave Configuration

- a) Select one of the slave devices in device selection.
- b) Select tab "Slave" and configure following options:
- NMT Slave: Enabled
- · Boot Slave: Enabled
- Mandatory Slave: Enabled
- · Axis Number: Select the axis number for example corresponding to the Node Id
- Axis Type: Standard
- c) Select tab "Heartbeat Control" and disable Heartbeat Producer.
- d) Select tab "Booting" and disable all bootup checks.
- e) Repeat slave configuration for all slaves in your system.

6) Step 6: Save Network Configuration

Click ¤OK¤ to save network configuration.

7) Step 7: Start writing your IEC 61131 program

Open programming tool and write your program addressing network devices.

4.4 Communication

4.4.1 Communication via Function Blocks

In order to address network devices using motion control function blocks, all devices need a unique axis number. Executing the minimal network configuration for all devices. The devices can be addressed without any further configuration steps.

Motion Control Function Blocks

	Function Block	(Configuration
Parameter	AXIS_REF.AxisNo =	= Axis Number	Parameter	1	Axis Number
Function Block	Example		Tab "Slave"		
AXIS_REF BOOL	WC_Power	Atis AXIS_REF Status BOOL Error BOOL ErrorID DINT	Ax Ax	Number	r Axis 0 T Used for motion control Library Standard T

 Table 4-34
 Motion Control Function Block: Configuration of Axis Number

CANopen CiA 301 Function Blocks

	Function Block	c		Configuration
Parameter	Device: Node Id Port: 0 internal port	, 1 CAN port	Parameter	Node Id
Function Block	Example:		Device Selection	on:
BOOL USINT UINT USINT	CAN_SdoRead Enable Device Port Index SubIndex	Done BOOL Error BOOL ErroriD DINT Data UDINT	Can be change	Devices in Save Network CAN-S POS2P [Node 127] POS2[Node 1] ed by DIP switch or Startup Wizard Node ID Node 1

4.4.2 Communication via Network Variables

In order to address network devices using network variables, some additional configuration steps are necessary.

- 1) Step 1: Open tab "Network Variables"
 - a) Open tool "Network Configuration".
 - b) Select one of the slave devices in device selection and activate tab "Network Variables"
- 2) Step 2: Define Output Network Variables Network Variables from the master to the slave can be used to control a slave device.
 - a) Click ¤Add Network Variable¤ in the upper part of the view.
 - b) Select a consumer object in selection combo box.
 - c) Click ¤OK¤ to confirm selection.
 - d) Repeat steps for each network variable.

laster EPOS2 P			S	lave EPOS	2		
Object Dictionary				Object Dictionary			
0xA640 0x01	0xA640 0x01 Process Output INT32-1			0x2062 0x00 PositionMode Setting Va			
	1						
IEC-61131 Program							
VAR_GLOBAL Axis0 adPositionModeSett	ingValue AT %	QD1.4	.0.0. DINT:				
END_VAR							
END_VAR	27]> EPOS2 [II	nternal]					
END_VAR	27]> EPOS2 [I/ Address	nternal] Type	Producer Object	TxPDO	Bus	RxPDO	Consumer Object
END_VAR letwork Variables: EPOS2 P [Node 12 letwork Variable 2 Aus0_cdPositionModeSetting	27]> EPOS2 [J Address %QD1.4.0.0	nternal] Type DINT	Producer Object Process Output INT32 -1	TxPDO TxPDO 1	Bus >	RxPDO RxPDO 1	Consumer Object Position Mode Setting Value

Figure 4-48 Output Network Variables (from IEC 61131 Program to Slave)

3) Step 3: Define Input Network Variables Network Variables from the slave to the master can be used to monitor actual values.

- a) Click ¤Add Network Variable¤ in the lower part of the view.
- b) Select a producer object in selection combo box.
- c) Click ¤OK¤ to confirm selection.
- d) Repeat above steps for every network variable.

laster EPOS2 P			Sla	Slave EPOS2			
Object Dictionary				Object Dicti	onary	69	
0xA1C0 0x01	Process Inp	out INT32-	-1	0x6064		00x00	Position Actual Value
	+						
IEC-61131 Program							
VAR_GLOBAL Axis0_idPositionActualV	alue AT %ID1.4.	0.0. DINT	C.				
LEND_VAR							
letwork Variables: EPOS2 P [Nod	e 127] < EPOS2 [[Internal]		2.000		7.000	
letwork Variables: EPOS2 P [Nod letwork Variable 2. Avidi idhostionActualValue	e 127] < EPOS2 [Address %TD1.4.0.0	Internal] Type DINT	Consumer Object	RxPDO RxPDO 2	Bus	TxPDO	Producer Object
ietwork Variables: EPOS2 P [Nod letwork Variable 22 Axis0_idPositionActualValue	e 127] < EPOS2 [Address %ID 1.4.0.0	[Internal] Type DINT	Consumer Object Process Input INT32 -1	RxPDO RxPDO 2	Bus <	TxPDO TxPDO 2	Producer Object Postion Actual Value
letwork Variables: EPOS2 P [Nod letwork Variables: 22 Axis0_jdPositionActualValue	e 127] <- EPOS2 [Address %ID 1.4.0.0	Internal] Type DINT	Consumer Object Process Input INT32 -1	RxPDO RxPDO 2	Bus <	TxPDO TxPDO 2	Producer Object Position Actual Value

Figure 4-49 Input Network Variables (from Slave to IEC 61131 Program)

4) Step 4: Network Variable File (*.poe)

- a) Click browse button on the bottom of the view.
- b) Enter network variable file name for export and close dialog.

Network Variable File C: WyOrectory/WetworkVariables.poe
Figure 4-50 Network Variable File

5) Step 5: Save Network Configuration and Export Network Variables

...

Click ¤OK¤ to save network configuration. The network variables are exported to selected network variable file.

6) Step 6: Import Network Variables to IEC 61131 program

- a) Open your IEC 61131 program in the programming tool «Open PCS».
- b) Select the menu item ¤Import¤ in the submenu "File" of the menu "File".
- c) Click the context menu item "Link to Active Resource' to use the network variables.

Project	* X
E-Project HELLOWORLD	
- 🛐 Counter.ST	
Usertype.typ	
WetworkVariables.poe	
Files Resources T Lib 🚱 Help	,
	_

Figure 4-51 Project Browser in Programming Tool

5 Function Blocks

For every function block, you will find...

- a brief description,
- a block diagram,
- a table listing the available variables,
- remarks and explanations on the variables and their behavior, and
- the Function Block call in type.

Please observe below information prior engaging with functionalities of further describes function blocks.

Generally applicable Parameters

- Function Block calls use programming language ST.
- Using the "Network Configuration Tool", axis number of internal and external axes may be set as desired. Thereby, respect permitted value range.
- The input/output variable Axis defines the addressed axis.
- The output variable Error signals an error having occurred during execution of the function block.
- The output variable ErrorID allows to get more information on the error cause.
- The output variable **Done** signals the successful read operation.

Important! Generally applicable Rules

The execution of a function block instance might take longer than one PLC cycle.

- For a proper working system, a function block instance must be called (Execute or Enable) at every program cycle until its termination is signalled by the output **Done**, **Error** or **Abort**.
- Upon every call, the function block instance will continue at its actual internal state (at the position it stopped during the previous PLC program cycle). Breaking this rule will cause system errors, especially if the function block uses CAN communication services which might not have been finished fast enough.

5.1 Motion Control Function Blocks

5.1.1 Administrative

5.1.1.1 MC_Power

Controls the power stage of the axis (enabled or disabled).

Important MC_Power must be called until output "Status" has same value as input "Enable".

Variables

Variable	Nama	Data Tuno		Unit -or-	
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Status	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) As long as *Enable* is TRUE (positive state), the power stage of the axis is activated.

O) Status shows state of power stage.

Table 5-36 MC_Power

5.1.1.2 MC_ReadStatus

Returns the status of the axis with respect to the motion currently in progress.

Variables

Variable	Name	Data Type	Default	Value Range	Unit –or– Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Valid	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-
	Errorstop	BOOL	FALSE	TRUE, FALSE	-
O	Disabled	BOOL	FALSE	TRUE, FALSE	-
Output "	Stopping	BOOL	FALSE	TRUE, FALSE	-
	StandStill	BOOL	FALSE	TRUE, FALSE	-
	DiscreteMotion	BOOL	FALSE	TRUE, FALSE	-
	ContinuousMotion	BOOL	FALSE	TRUE, FALSE	-
	Homing	BOOL	FALSE	TRUE, FALSE	-

As long as *Enable* is TRUE (positive state), status parameter is continuously being read.
 TRUE (positive state) of *Valid* signals successful update of axis status.

Table 5-37 MC_ReadStatus

Details on possible states (\rightarrow Figure 5-54).

Function Blocks Motion Control Function Blocks

Notes:

- 1) In *Errorstop* or *Stopping*, all function blocks can be called, although they will not be executed, except MC_Reset and *Error*. They will generate the transition to *StandStill* or *Errorstop*, respectively.
- 2) Power.Enable = TRUE and no error present in the axis.
- 3) MC_Stop.Done
- 4) MC_Power.Enable = FALSE
- Figure 5-54 MC_ReadStatus States

```
-----
                     _____
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbRead : MC_ReadStatus; (* fbRead is instance of MC_ReadStatus *)
END VAR
_____
                            _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
                                                 (* Call function block instance *)
fbRead(Axis := myAxis, Enable := TRUE);
IF fbRead.Valid & fbRead.Errorstop THEN
. . .
END_IF;
```

5.1.1.3 MC_ReadAxisError

Returns the first entry in the error history of the EPOS device.

Figure 5-55 MC_ReadAxisError

Variables

Variable	Name	Data Type		Unit -or-	
variable			Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
ouput	ErrorID	DINT	0	EPOS device error →item "[7]" on page 1-7	-

I) As long as *Enable* is TRUE (positive state), the value of the first entry in the error history is continuously being read.

O) With successful operation (*Error* = FALSE), *ErrorID* contains the axis error (→item "[7]" on page 1-7).

Table 5-38 MC_ReadAxisError

5.1.1.4 MC_ReadParameter

Returns an axis parameter value.

Figure 5-56 MC_ReadParameter

Important!

Variables

Execution of the instance might take longer than one PLC cycle (>page 5-49).

				Unit -or-	
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Enable	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	ParameterNumber	UDINT	0	PLCopen parameter: 1 CommandedPosition 2 SWLimitPos 3 SWLimitNeg 7 MaxPositionLag 8 MaxVelocitySystem 9 MaxVelocitySystem 9 MaxVelocityAppl 10 ActualVelocity 11 CommandedVelocity 13 MaxAccelerationAppl 15 MaxDecelerationAppl CANopen objects: 16#xxxxyyzz multiplexer (hex) xxxx: Object index (hex) yy: Object subindex (hex) zz: Object length (hex)	_
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
Output	ErrorID	DINT	0	For codes →page 8-144	-
	Value	UDINT	0	04'294'967'295	-
	I) As long as En	able is TRUE (pos	sitive state)	, the value of a specified parameter	is continuously

As long as Enable is TRUE (positive state), the value of a specified parameter is continuously being read.

ParameterNumber defines the parameter to be read. Besides the listed parameter, CANopen objects can be read using ParameterNumber as a multiplexer. Thus, allowing to read all EPOS objects from the object dictionary (→separate document «EPOS2 Firmware Specification»). The multiplexer (for details → "Multplexer Example" on page 5-55) is composed of 2 bytes object index (Byte 3 and 2), 1 byte object subindex (Byte 1) and 1 byte object length (Byte 0). Value allows retrieval of the value.

Table 5-39 MC ReadParameter

O)

Function Blocks Motion Control Function Blocks

Multplexer Example

ParameterNumber =	16#207C0102
Name =	Analog Input 1
Object Index =	16#207C
Object Subindex =	16#01
Object Length =	16#02

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbReadP : MC_ReadParameter; (* fbReadP is instance of MC_ReadParameter *)
END_VAR
(* Function Block call for updating the actual velocity *)
fbReadP(Axis := myAxis, Enable := TRUE, ParameterNumber := 10);
(* Function Block call for reading the CANopen object Analog Input 1*)
fbReadP(Axis := myAxis, Enable := TRUE, ParameterNumber := 16#207C0102);
```

5.1.1.5 MC_ReadLongParameter

Returns on 64-bit axia parameter value.

Figure 5-57 MC ReadLongParameter

Important! Execution of the instance might take longer than one PLC cycle (→page 5-49).

Variables

Variable	Namo	Data Type		Unit -or-	
Valiable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Enable	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	ParameterNumber	UDINT	0	16#xxxyyzz multiplexer (hex) xxxx: Object index (hex) yy: Object subindex (hex) zz: Object length (hex)	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	ErrorID	DINT	0	For codes →page 8-144	-
	ValueHigh	UDINT	0	04'294'967'295	-
	ValueLow	UDINT	0	04'294'967'295	-

I) As long as *Enable* is TRUE (positive state), the value of a specified parameter is continuously being read.

ParameterNumber defines the parameter to be read. CANopen objects can be read using ParameterNumber as a multiplexer. Thus, allowing to read all EPOS objects from the object dictionary (>separate document «EPOS2 Firmware Specification»).

The multiplexer (for details \rightarrow "Multplexer Example" on page 5-57) is composed of 2 bytes object index (Byte 3 and 2), 1 byte object subindex (Byte 1) and 1 byte object length (Byte 0).

O) ValueLow and ValueHigh allows retrieval of a 64-Bit value.

Table 5-40 MC_ReadLongParameter

Function Blocks Motion Control Function Blocks

Multplexer Example

ParameterNumber =	16#20040008
Name =	Serial Number
Object Index =	16#2004
Object Subindex =	16#00
Object Length =	16#08

Call

fbReadP(Axis := myAxis, Enable := TRUE, ParameterNumber := 16#20040008);

5.1.1.6 MC_ReadBoolParameter

Returns an axis parameter value.

Figure 5-58 MC_ReadBoolParameter

Important!

Execution of the instance might take longer than one PLC cycle (→page 5-49).

Variables

Variable	Nama	Data Tuna		Unit -or-	
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Enable	BOOL	FALSE	TRUE, FALSE	-
Input ^{*)}	ParameterNumber	UDINT	0	4 EnableLimitPos 5 EnableLimitNeg 6 EnablePosLagMonitoring	-
*0)	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
Output "	ErrorID	DINT	0	For codes →page 8-144	-
	Value	UDINT	0	04'294'967'295	-

 As long as *Enable* is TRUE (positive state), the value of a specified boolean parameter is continuously being read.

ParameterNumber defines the parameter to be read.

- O) Value allows retrieval of the value.
- Table 5-41 MC_ReadBoolParameter

5.1.1.7 MC_WriteParameter

Modifies the value of an axis parameter.

Figure 5-59 MC_WriteParameter

Important!

Execution of the instance might take longer than one PLC cycle (→page 5-49).

Variables

Variable	Name	Data Type	Default	Value Range	Unit –or– Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	_
Input ^{*I)}	ParameterNumber	UDINT	0	PLCopen parameter: 2 SWLimitPos 3 SWLimitNeg 7 MaxPositionLag 8 MaxVelocitySystem 9 MaxVelocityAppl 11 CommandedVelocity 13 MaxAccelerationAppl 15 MaxDecelerationAppl 1000 SaveAllParameter CANopen objects: 16#xxxxyyzz multiplexer (hex) xxxx: Object index (hex) yy: Object subindex (hex) zz: Object length (hex)	-
	Value	UDINT	0	04'294'967'295	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 A positive edge of *Execute* triggers a write operation of the specified parameter. *ParameterNumber* defines the parameter to be written. Besides the listed parameter, CANopen objects can be read using *ParameterNumber* as a multiplexer. Thus, allowing to read all EPOS objects from the object dictionary (→ separate document «EPOS2 Firmware Specification»). The multiplexer (for details → "Multplexer Example" on page 5-60) is composed of 2 bytes object index (Byte 3 and 2), 1 byte object subindex (Byte 1) and 1 byte object length (Byte 0).
 Successful write operation is signalled with a positive value (TRUE) at *Done*.

Table 5-42 MC WriteParameter

Function Blocks Motion Control Function Blocks

Multplexer Example

ParameterNumber =	16#20780102
Name =	Analog Input 1
Object Index =	16#2078
Object Subindex =	16#01
Object Length =	16#02

Call

(* Function Block call for writing the digital outputs *)
fbWriteP(Axis := myAxis, Execute := TRUE, ParameterNumber := 16#20780102);

5.1.1.8 MC_WriteLongParameter

Modifies the value of a 64-bit axis parameters.

Figure 5-60 MC WriteLongParameter

Important!

Execution of the instance might take longer than one PLC cycle (>page 5-49).

Variables

I)

Variable	Nama	Data Tura		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	ParameterNumber	UDINT	0	16#xxxxyyzz multiplexer (hex) xxxx: Object index (hex) yy: Object subindex (hex) zz: Object length (hex)	-
	ValueHigh	UDINT	0	04'294'967'295	-
	ValueLow	UDINT	0	04'294'967'295	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

A positive edge of *Execute* triggers a write operation of the specified parameter. *ParameterNumber* defines the parameter to be written. CANopen objects can be read using *ParameterNumber* as a multiplexer. Thus, allowing to read all EPOS objects from the object dictionary (→ separate document «EPOS2 Firmware Specification»). The multiplexer (for details → "Multplexer Example" on page 5-62) is composed of 2 bytes object index (Byte 3 and 2), 1 byte object subindex (Byte 1) and 1 byte object length (Byte 0).

O) Successful write operation is signalled with a positive value (TRUE) at *Done*.

Table 5-43 MC_WriteLongParameter

Function Blocks Motion Control Function Blocks

Multplexer Example	
ParameterNumber =	16#20C10008
Name =	Interpolation Data Record
Object Index =	16#20C1
Object Subindex =	16#00
Object Length =	16#08

5.1.1.9 MC_ReadActualPosition

Returns the actual position of an axis.

Figure 5-61 MC_ReadActualPosition

Important!

Execution of the instance might take longer than one PLC cycle (→page 5-49).

Variables

Variable	Name	Data Type	Default	Value Range	Unit –or– Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-
	Position	DINT	0	-2'147'483'648 [min(DINT)] +2'147'483'647 [max(DINT)]	qc

I) As long as *Enable* is TRUE (positive state), the actual position is continuously being read.

O) The actual position can be retrieved from Position.

Position is defined in quadcount (encoder increments) [qc].

Table 5-44 MC_ReadActualPosition

5.1.1.10 MC_ReadActualVelocity

Returns the actual velocity of an axis.

Figure 5-62 MC_ReadActualVelocity

Important!

Execution of the instance might take longer than one PLC cycle (→page 5-49).

Variables

Variable	Nama	Data Turna		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-
	Velocity	DINT	0	-2'147'483'648 [min(DINT)] +2'147'483'647 [max(DINT)]	rpm

I) As long as *Enable* is TRUE (positive state), the actual velocity is continuously being read.

O) The actual velocity can be retrieved from Velocity.

Table 5-45 MC_ReadActualVelocity

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbVel : MC_ReadActualVelocity; (* fbVel is instance of MC_ReadActualVelocity *)
END_VAR
(* Function Block call for reading the actual velocity *)
fbVel(Axis := myAxis, Enable := TRUE);
```

5.1.1.11 MC_ReadActualCurrent

Returns the actual current of an axis.

Important!

Execution of the instance might take longer than one PLC cycle (>page 5-49).

Variables

Variable	Name	Data Type	Default	Value Range	Unit –or– Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	ErrorID	DINT	0	For codes →page 8-144	-
	Current	INT	0	−32768 [min(INT)] … +32767 [max(INT)]	mA

I) As long as *Enable* is TRUE (positive state), the actual current is continuously being read.

O) The actual current can be retrieved from Current.

Table 5-46 MC_ReadActualCurrent

5.1.1.12 MC_Reset

Resets all internal axis-related errors.

Important

MC_Reset has to be called until termination is signalled at the output ("Done" or "Error").

Variables

Variable	Name	Data Type		Unit -or-	
			Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 At positive edge of *Execute*, axis status changes from Errorstop to StandStill. After execution of MC_Reset, the power stage must be re-enabled (→ "MC_Power" on page 5-50).

O) Done signals successful reset of axis status.

Table 5-47 MC_Reset

5.1.1.13 MC_SetOperationMode

Sets the operation mode.

Figure 5-65 MC_SetOperationMode

Variables

Variable	Namo	Data Tuno		Unit -or-	
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	ModeOfOperation	SINT		Profile Position Mode = 1 Profile Velocity Mode = 3 Homing Mode = 6 Interpolated Position Mode = 7 Position Mode = -1 Velocity Mode = -2 Current Mode = -3 Master Encoder Mode = -5 Step/Direction Mode = -6	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of the operation mode object. O)

Successful write operation is signalled with a positive value (TRUE) at Done.

Table 5-48 MC_SetOperationMode

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
\texttt{fbSetOpMode} \ : \ \texttt{MC\_SetOperationMode}; \ \texttt{(* fbSetOpMode is instance of } \ \texttt{MC\_SetOperationMode}; \ \texttt{MC\_SetOpe
*)
END_VAR
  _____
  (* Function Block call for writing the mode of operation to position mode *)
fbSetOpMode (Axis := myAxis, Execute := TRUE, ModeOfOperation := 16#FF);
```

5.1.2 Motion

5.1.2.1 MC_MoveAbsolute

Commands a controlled motion to a specified absolute position using a trapezoidal or sinusoidal profile.

Important!

Execution of the instance might take longer than one PLC cycle (>page 5-49).

Variables

Variable N	Nama	Data Tuna		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Position	DINT	0	-2'147'483'648+2'147'483'647	qc
	Velocity	UDINT	0	0max. profile velocity	rpm
	Acceleration	UDINT	0	0max. acceleration	rpm/s
	Deceleration	UDINT	0	0max. deceleration	rpm/s
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Abort	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a new absolute movement using a profile corresponding to *Velocity, Acceleration* and *Deceleration*.

Position is defined in quad count (encoder increments) [qc].

O) Successful positioning is signalled with a positive value (TRUE) at Done. Execution of this instance is immediately stopped if another function block instance is executing movement using the same axis. In this case a positive state (TRUE) at Abort will be set.

Done, Abort and Error can be reset by a negative state (FALSE) to Execute. If Execute is reset before completion of positioning, Done, Abort and Error show status of positioning during one cycle, then they are reset to negative state (FALSE).

Velocity, Acceleration and *Deceleration* must only be defined upon first call – repeated calls will use value of first call and do not require further definition.

Table 5-49 MC_MoveAbsolute

Details on possible calling sequences (→Figure 5-67).

- The first sequence shows two complete movements. The second instance will be initiated upon completion of the first movement.
- The second sequence shows an interrupted movement. Setting the variable Test will trigger the second instance while fist instance is being executed.

Call

fbMove(Axis:=myAxis,Execute:=Start,Position:=Pos,Velocity:=25,Acceleration:=50,Deceleration:=50);

5.1.2.2 MC_MoveRelative

Commands a controlled motion of a specified distance relative to the actual position at the time of the execution using trapezoidal or sinusoidal profile. The new absolute target position is defined by the distance added to the last position setting value.

Important!

Execution of the instance might take longer than one PLC cycle (→page 5-49).

Variables

Variable	Nomo			Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Distance	DINT	0	-2'147'483'648+2'147'483'647	qc
	Velocity	UDINT	0	025'000	rpm
	Acceleration	UDINT	0	04'294'967'295	rpm/s
	Deceleration	UDINT	0	04'294'967'295	rpm/s
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Abort	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 A positive edge of *Execute* triggers a new absolute movement using a profile corresponding to Velocity, Acceleration and Deceleration. The defined distance is added to the last position setting value and commanded as a new target position.

Distance is defined in quadcount (encoder increments) [qc].

O) Successful positioning is signalled with a positive value (TRUE) at *Done*. Execution of this instance is immediately stopped if another function block instance is executing movement using the same axis. In this case a positive state (TRUE) at *Abort* will be set.
 Done, *Abort* and *Error* can be reset by a negative state (FALSE) to *Execute*. If *Execute* is reset before completion of positioning, *Done*, *Abort* and *Error* show status of positioning during one cycle, then they are reset to negative state (FALSE).

Velocity, Acceleration and *Deceleration* must only be defined upon first call – repeated calls will use value of first call and do not require further definition.

Table 5-50 MC_MoveRelative

Details on possible calling sequences (→Figure 5-69).

- The first sequence shows two complete movements. The second function block instance is started after the complete termination of the first movement.
- The second sequence shows an interrupted movement. Setting the variable Test triggers the start of the second function block instance during execution of the first one.

5.1.2.3 MC_MoveVelocity

Commands a continuously controlled motion at a specified velocity using a trapezoidal or sinusoidal acceleration profile.

Execution of the instance might take longer than one PLC cycle (>page 5-49).

Variables

Important!

Variable	Nama	Data Tura		Unit -or-	
variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
	Velocity	UDINT	0	025'000	rpm
Input ^{*I)}	Acceleration	UDINT	0	04'294'967'295	rpm/s
	Deceleration	UDINT	0	04'294'967'295	rpm/s
	Direction	Enum MC_Direction	MCposi- tive	MCpositive MCnegative	-
	InVelocity	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Abort	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 A positive edge of *Execute* triggers a new absolute continues velocity movement defined by *Velocity* using values of *Acceleration* and *Deceleration*.
 MC_Stop will stop the movement. Another call changes the active velocity, thereby *Velocity* must be of positive value higher than 0.
 Direction defines the movement direction and is defined in quadcount (encoder increments) [qc].

 InVelocity signals achievement of commanded velocity. Another call executing a movement using the same axis will immediately stop the movement. In this case a positive state (TRUE) at Abort will be set. InVelocity, Abort and Error can be reset by a negative state (FALSE) to Execute. If reset before completion of positioning, InVelocity, Abort and Error show status of positioning during one cycle, then they are reset to negative state (FALSE).

Velocity, Acceleration and *Deceleration* must only be defined upon first call – repeated calls will use value of first call and do not require further definition.

Table 5-51 MC_MoveVelocity
Details on possible calling sequences (→Figure 5-71).

- The first sequence shows two complete movements. The second function block instance is started after the complete termination of the first movement.
- The second sequence shows an interrupted movement. Setting the variable Test triggers the start of the second function block instance during execution of the first one.

Function Blocks Motion Control Function Blocks

5.1.2.4 MC_Home

Commands the axis to perform the homing procedure. The absolute home position is determined using one of the available homing methods (for details → separate document «EPOS2 Firmware Specification»).

Variables

Variable	Namo	Data Tuno		Unit -or-	
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Exec	Execute	BOOL	FALSE	TRUE, FALSE	-
input '	Position	DINT	0	-2'147'483'648+2'147'483'647	qc
	Done	BOOL	FALSE	TRUE, FALSE	-
O	Abort	BOOL	FALSE	TRUE, FALSE	-
Output ^O	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

A positive edge of *Execute* triggers a new homing procedure. *Position* determines the new home position value after successful completion homing procedure and is defined in quadcount (encoder increments) [qc]. *Position* must only be defined upon first call – repeated calls will use value of first call and do not require further definition. Additional parameters for a homing procedure must be configured using MC_WriteParameter (→page 5-59), for detailed information → separate document «EPOS2 Firmware Specification».

O) Done signals successful termination of the procedure. If another instance is starting a homing procedure using the same axis, the execution of the first instance is immediately being stopped, Abort is set to positive state (TRUE). Done, Abort and Error can be reset by a negative state (FALSE) to Execute. If Execute is reset before completion of positioning, Done, Abort and Error show status of positioning during one cycle, then they are reset to negative state (FALSE).

Table 5-52 MC_Home

Call

I)

5.1.2.5 MC_Stop

Commands a controlled motion stop of the axis using a trapezoidal or sinusoidal deceleration profile.

Figure 5-73 MC_Stop

Variables

Variable	Nama	Data Turna		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
input ^{iy}	Deceleration	UDINT	0	0max. acceleration	rpm/s
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* stops the axis using a defined deceleration profile.

O) Done and Error are reset by setting a negative state (FALSE) to Execute. If Execute is reset before completion of positioning, Done and Error will continue to signal the stoppage during one cycle, and are then reset to negative state (FALSE).

Table 5-53 MC_Stop

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbStop : MC_Stop; (* fbStop is instance of MC_Stop *)
Start : BOOL := FALSE;
END VAR
_____
(* Call function block instance *)
fbStop(Axis := myAxis, Execute := Start, Deceleration := 1000);
```

5.2 **Maxon Utility Function Blocks**

5.2.1 Homing

5.2.1.1 MU_GetHomingParameter

Returns the values of the EPOS homing objects.

Figure 5-74 MU_GetHomingParameter

Variables

Variable	Namo	Data Type		Value	Unit -or-
Vallable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-
Output ^{*O)}	Method	SINT	7	cNegLimitSwitchIndex = 1, cPosLimitSwitchIndex = 2, cHomeSwitchPosSpeedIndex = 7, cHomeSwitchNegSpeedIndex = 11, cNegLimitSwitch = 17, cPosLimitSwitch = 18, cHomeSwitchPosSpeed = 23, cHomeSwitchNegSpeed = 27, cIndexNegSpeed = 33, cIndexPosSpeed = 34, cActualPosition = 35, cCurThreshPosSpeedIndex = -1, cCurThreshNegSpeedIndex = -2, cCurThreshPosSpeed = -3, cCurThreshNegSpeed = -4	_
	Offset	DINT	0	-2'147'483'648+2'147'483'647	qc
	SpeedSwitch	UDINT	100	0max. profile velocity	rpm
	SpeedIndex	UDINT	100	0max. profile velocity	rpm
	Acceleration	UDINT	1000	0max. acceleration	rpm/s
	CurrentThreshold	UINT	500	0 and up (depending on hardware)	mA

I) As long as Enable is TRUE (positive state), the values of the EPOS homing objects are continuously being read.

The values of the objects can be read from Method, Offset, SpeedSwitch, SpeedIndex, Accelera-O) tion and CurrentThreshold.

Table 5-54 MU_GetHomingParameter

maxon motor control

maxon motor

Function Blocks Maxon Utility Function Blocks

5.2.1.2 MU_SetHomingParameter

Modifies the values of the EPOS homing objects.

Figure 5-75 MU_SetHomingParameter

Variables

Variable	Name	Data Type		Value	Unit -or-
Variable	Humo	Dulu Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	Method	SINT	7	cNegLimitSwitchIndex = 1, cPosLimitSwitchIndex = 2, cHomeSwitchPosSpeedIndex = 7, cHomeSwitchNegSpeedIndex = 11, cNegLimitSwitch = 17, cPosLimitSwitch = 18, cHomeSwitchPosSpeed = 23, cHomeSwitchNegSpeed = 27, cIndexNegSpeed = 33, cIndexPosSpeed = 34, cActualPosition = 35, cCurThreshPosSpeedIndex = -1, cCurThreshNegSpeedIndex = -2, cCurThreshNegSpeed = -3, cCurThreshNegSpeed = -4	_
	Offset	DINT	0	-2'147'483'648+2'147'483'647	qc
	SpeedSwitch	UDINT	100	0max. profile velocity	rpm
	SpeedIndex	UDINT	100	0max. profile velocity	rpm
	Acceleration	UDINT	1000	0max. acceleration	rpm/s
	CurrentThreshold	UINT	500	0 and up (depending on hardware)	mA
	Done	BOOL	FALSE	TRUE, FALSE	-
Output	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 A positive edge of *Execute* triggers a write operation of the EPOS homing objects. *Method*, *Offset*, *SpeedSwitch*, *SpeedIndex*, *Acceleration* and *CurrentThreshold* contain the values of the parameters to be written.

Table 5-55 MU_SetHomingParameter

maxon motor

Function Blocks Maxon Utility Function Blocks

5.2.2 Position Mode

5.2.2.1 MU_ActivatePositionMode

Sets the «PositionMode» as active operation mode.

Figure 5-76 MU_ActivatePositionMode

Variables

Variable	Name	Data Tuno		Unit -or-	
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers the activation of position mode.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-56 MU_ActivatePositionMode

5.2.2.2 MU_SetPositionMust

Sets the Position Mode setpoint.

Figure 5-77 MU_SetPositionMust

Variables

Variable	Nomo	Data Tuno		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
input "	Position	DINT	0	-2'147'483'648+2'147'483'647	qc
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of the position mode setting value object.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-57 MU_SetPositionMust

5.2.2.3 MU_EnableAnalogPositionSetpoint

Activates the analog position setpoint.

Figure 5-78 MU_EnableAnalogPositionSetpoint

Variables

Variable	Name Da	Data Tuno	Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers activation of analog position setpoint.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-58 MU_EnableAnalogPositionSetpoint

Call

fbEnable (Axis := myAxis, Execute := TRUE);

5.2.2.4 MU_DisableAnalogPositionSetpoint

Deactivates the analog position setpoint.

Figure 5-79 MU_DisableAnalogPositionSetpoint

Variables

Variable	Name Data Type	Data Tuno		Unit -or-	
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers deactivation of analog position setpoint.

O) Successful operation is signalled with a positive value (TRUE) at *Done*.

```
Table 5-59 MU_DisableAnalogPositionSetpoint
```

Call

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbDisable : MU_DisableAnalogPositionSetpoint; (* fbDisable is instance of
MU_DisableAnalogPositionSetpoint *)
END_VAR
(* Function Block call for analog position setpoint deactivation *)
```

fbDisable (Axis := myAxis, Execute := TRUE);

5.2.2.5 MU_GetAnalogPositionParameter

Reads the parameter for the analog position setpoint.

Figure 5-80 MU_GetAnalogPositionParameter

Variables

Variable	Namo	Data Tura		Unit -or-	
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
• · · ·*O)	ErrorID	DINT	0	For codes →page 8-144	-
Output ⁽⁾	Scaling	INT	0	-32'767+32'768	qc/V
	Offset	DINT	0	-2'147'483'648+2'147'483'647	qc
	NotationIndex	SINT	0	-20 (10 ⁻² 10 ⁰),	-

I) As long as *Enable* is TRUE (positive state), the values of the analog position setpoint objects are continuously being read.

O) The values of the objects can be read from *Scaling*, *Offset* and *NotationIndex*.

Table 5-60 MU_GetAnalogPositionParameter

Call

(* Function Block call for reading the analog position setpoint parameters *)
fbGet (Axis := myAxis, Enable := TRUE);

5.2.2.6 MU_SetAnalogPositionParameter

Writes the parameter for the analog position setpoint.

Figure 5-81 MU SetAnalogPositionParameter

Variables

Variable	Namo Data Tvr	Data Type		Value	Unit -or-
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
.*!)	Scaling	INT	0	-32'767+32'768	qc/V
Input '/	Offset	DINT	0	-2'147'483'648+2'147'483'647	qc
	NotationIndex	SINT	0	-20 (10 ⁻² 10 ⁰),	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of the analog position setpoint objects. *Scaling, Offset* and *NotationIndex* contain the value of the parameters to be written.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-61 MU_SetAnalogPositionParameter

Call

fbSet (Axis := myAxis, Execute := TRUE, Scaling := 0, Offset := 0, NotationIndex := 0);

5.2.3 Velocity Mode

5.2.3.1 MU_ActivateVelocityMode

Sets the «Velocity Mode» as active operation mode.

Variables

Variable	Name [Data Tuno		Unit -or-	
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers the activation of velocity mode.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-62 MU_ActivateVelocityMode

5.2.3.2 MU_SetVelocityMust

Sets the Velocity Mode setpoint.

Figure 5-65 MO_SelPOSItion

Variables

Variable	Nama	Data Turna		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
input "	Velocity	DINT	0	±max. profile velocity	rpm
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of the velocity mode setting value object.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-63 MU_SetPositionMust

5.2.3.3 MU_EnableAnalogVelocitySetpoint

Activates the analog velocity setpoint.

Figure 5-84 MU_EnableAnalogVelocitySetpoint

Variables

Variable	Name Data Typ	Data Tuno	Value Value		
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers activation of analog velocity setpoint.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-64 MU_EnableAnalogVelocitySetpoint

Call

fbEnable (Axis := myAxis, Execute := TRUE);

5.2.3.4 MU_DisableAnalogVelocitySetpoint

Deactivates the analog velocity setpoint.

Figure 5-85 MU_DisableAnalogVelocitySetpoint

Variables

Variable	Name Data Type	Data Tuno		Unit -or-	
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers deactivation of analog velocity setpoint.

O) Successful operation is signalled with a positive value (TRUE) at *Done*.

Table 5-65 MU_DisableAnalogVelocitySetpoint

Call

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbDisable : MU_DisableAnalogVelocitySetpoint; (* fbDisable is instance of
MU_DisableAnalogVelocitySetpoint *)
END_VAR
(* Function Block call for analog velocity setpoint deactivation *)
```

fbDisable (Axis := myAxis, Execute := TRUE);

5.2.3.5 MU_GetAnalogVelocityParameter

Reads the parameter for the analog velocity setpoint.

Figure 5-86 MU GetAnalogVelocityParameter

Variables

Variable	Namo	Data Tuno		Unit -or-	
variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
• · · ·*O)	ErrorID	DINT	0	For codes →page 8-144	-
Output ⁽⁾	Scaling	INT	0	-32'767+32'768	rpm/V
	Offset	SINT	0	±max. profile velocity	rpm
	NotationIndex	SINT	0	-20 (10 ⁻² 10 ⁰),	-

I) As long as *Enable* is TRUE (positive state), the values of the analog velocity setpoint objects are continuously being read.

O) The values of the objects can be read from *Scaling*, *Offset* and *NotationIndex*.

Table 5-66 MU_GetAnalogVelocityParameter

Call

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbGet : MU_GetAnalogVelocityParameter; (* fbGet is instance of
MU_GetAnalogVelocityParameter *)
END_VAR
```

(* Function Block call for reading the analog velocity setpoint parameters *)
fbGet (Axis := myAxis, Enable := TRUE);

maxon motor

5.2.3.6 MU_SetAnalogVelocityParameter

Writes the parameter for the analog velocity setpoint.

Figure 5-87 MU_SetAnalogVelocityParameter

Variables

Variable	Nomo Doto T	Data Tuno		Unit -or-	
variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
*!)	Scaling	INT	0	-32'767+32'768	rpm/V
Input "	Offset	SINT	0	±max. profile velocity	rpm
	NotationIndex	SINT	0	-20 (10 ⁻² 10 ⁰),	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of the analog velocity setpoint objects. *Scaling, Offset* and *NotationIndex* contain the value of the parameters to be written.

O) Successful operation is signalled with a positive value (TRUE) at *Done*.

Table 5-67 MU_SetAnalogVelocityParameter

Call

fbSet (Axis := myAxis, Execute := TRUE, Scaling := 0, Offset := 0, NotationIndex := 0);

5.2.4 Current Mode

5.2.4.1 MU_ActivateCurrentMode

Sets the «Current Mode» as active operation mode.

Figure 5-88 MU_ActivateCurrentMode

Variables

Variable	Name Data	Data Tuno	Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers the activation of current mode.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-68 MU_ActivateCurrentMode

5.2.4.2 MU_SetCurrentMust

Sets the Current Mode setpoint.

Figure 5-89 MU_SetCurrentMust

Variables

Variable	Nama	Doto Turno		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
input "	Current	INT	0	depends on hardware	mA
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of the current mode setting value object.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-69 MU_SetCurrentMust

5.2.4.3 MU_EnableAnalogCurrentSetpoint

Activates the analog current setpoint.

Figure 5-90 MU_EnableAnalogCurrentSetpoint

Variables

Variable	Name Data	Data Tuno	Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers activation of analog current setpoint.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-70 MU_EnableAnalogCurrentSetpoint

Call

fbEnable (Axis := myAxis, Execute := TRUE);

5.2.4.4 MU_DisableAnalogCurrentSetpoint

Deactivates the analog current setpoint.

Figure 5-91 MU_DisableAnalogCurrentSetpoint

Variables

Variable	Name Data Type	Data Tupo		Unit -or-	
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers deactivation of analog current setpoint.

O) Successful operation is signalled with a positive value (TRUE) at *Done*.

Table 5-71 MU_DisableAnalogCurrentSetpoint

Call

fbDisable (Axis := myAxis, Execute := TRUE);

5.2.4.5 MU_GetAnalogCurrentParameter

Reads the parameter for the analog current setpoint.

Figure 5-92 MU_GetAnalogCurrentParameter

Variables

Variable	Nama	Data Tuno		Unit -or-	
variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
• · · ·*O)	ErrorID	DINT	0	For codes →page 8-144	-
Output ⁽⁾	Scaling	INT	0	-32'767+32'768	mA/V
	Offset	DINT	0	depends on hardware	mA
	NotationIndex	SINT	0	-20 (10 ⁻² 10 ⁰),	-

I) As long as *Enable* is TRUE (positive state), the values of the analog current setpoint objects are continuously being read.

O) The values of the objects can be read from *Scaling*, *Offset* and *NotationIndex*.

Table 5-72 MU_GetAnalogCurrentParameter

Call

(* Function Block call for reading the analog current setpoint parameters *)
fbGet (Axis := myAxis, Enable := TRUE);

maxon motor

5.2.4.6 MU_SetAnalogCurrentParameter

Writes the parameter for the analog current setpoint.

Figure 5-93 MU_SetAnalogCurrentParameter

Variables

Variable	Namo Data Turr	Data Tuno	Value Value		Unit -or-
variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
*!)	Scaling	INT	0	-32'767+32'768	mA/V
Input "	Offset	DINT	0	depends on hardware	mA
	NotationIndex	SINT	0	-20 (10 ⁻² 10 ⁰),	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of the analog current setpoint objects. *Scaling, Offset* and *NotationIndex* contain the value of the parameters to be written.

O) Successful operation is signalled with a positive value (TRUE) at *Done*.

Table 5-73 MU SetAnalogCurrentParameter

Call

fbSet (Axis := myAxis, Execute := TRUE, Scaling := 0, Offset := 0, NotationIndex := 0);

5.2.5 Master Encoder Mode

5.2.5.1 MU_ActivateMasterEncoderMode

Sets the «Master Encoder Mode» as active operation mode.

Figure 5-94 MU_ActivateMasterEncoderMode

Variables

Variable	Name Da	Data Tuno		Unit -or-	
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers the activation of master encoder mode.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-74 MU_ActivateMasterEncoderMode

5.2.5.2 MU_GetMasterEncoderParameter

Reads the Master Encoder Mode parameter.

Figure 5-95 MU_GetMasterEncoderParameter

Variables

Variable	Nama	Data Turna	Value		Unit -or-
variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
O	ErrorID	DINT	0	For codes →page 8-144	-
Output 37	ScalingNumerator	UINT	1	065'535	-
	ScalingDenominator	UINT	1	065'535	-
	Polarity	USINT	0	0, 1	-
				the velues of the meeter encoder r	ando obionto ara

- As long as *Enable* is TRUE (positive state), the values of the master encoder mode objects are continuously being read.
- O) The values of the objects can be read from *ScalingNumerator*, *ScalingDenominator* and *Polarity*.
 Table 5-75 MU GetMasterEncoderParameter

Call

fbGet (Axis := myAxis, Enable := TRUE);

5.2.5.3 MU_SetMasterEncoderParameter

Writes the Master Encoder Mode parameter.

Figure 5-96 MU SetMasterEncoderParameter

Variables

Variable	Name Dat	Data Turpo		Unit -or-	
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
	ScalingNumerator	UINT	1	065'535	-
input ^{iy}	ScalingDenominator	UINT	1	065'535	-
	Polarity	USINT	0	0, 1	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 A positive edge of *Execute* triggers a write operation of the master encoder mode objects. ScalingNumerator, ScalingDenominator and Polarity contain the value of the parameters to be written.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-76 MU_SetMasterEncoderParameter

5.2.6 Step/Direction Mode

5.2.6.1 MU_ActivateStepDirectionMode

Sets the «Step/Direction Mode» as active operation mode.

Figure 5-97 MU_ActivateStepDirectionMode

Variables

Variable	Name	Data Tuno	Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers the activation of step direction mode.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-77 MU_ActivateStepDirectionMode

5.2.6.2 MU_GetStepDirectionParameter

Reads the Step/Direction Mode parameter.

Figure 5-98 MU GetStepDirectionParameter

Variables

Variable	Name	Data Tuna	Value		Unit -or-			
		Data Type	Default	Range	Element [Type]			
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]			
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-			
	Done	BOOL	FALSE	TRUE, FALSE	-			
	Error	BOOL	FALSE	TRUE, FALSE	-			
O utmut [*] ()	ErrorID	DINT	0	For codes →page 8-144	-			
Output -/	ScalingNumerator	UINT	1	065'535	-			
	ScalingDenominator	UINT	1	065'535	-			
	Polarity	USINT	0	0, 1	-			
	A loss of Field is TDUE (resting to b) the veloce of the star direction mode shipts are							

 As long as *Enable* is TRUE (positive state), the values of the step direction mode objects are continuously being read.

O) The values of the objects can be read from *ScalingNumerator*, *ScalingDenominator* and *Polarity*.
 Table 5-78 MU GetStepDirectionParameter

Call

fbGet (Axis := myAxis, Enable := TRUE);

5.2.6.3 MU_SetStepDirectionParameter

Writes the Step/Direction Mode parameter.

Figure 5-99 MU_SetStepDirectionParameter

Variables

Variable	Namo	Data Typo		Unit -or-	
	name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
*!)	Execute	BOOL	FALSE	TRUE, FALSE	-
	ScalingNumerator	UINT	1	065'535	-
input "	ScalingDenominator	UINT	1	065'535	-
	Polarity	USINT	0	0, 1	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

- A positive edge of *Execute* triggers a write operation of the step direction mode objects. ScalingNumerator, ScalingDenominator and Polarity contain the value of the parameters to be written.
- O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-79 MU_SetStepDirectionParameter

5.2.7 Interpolated Position Mode

5.2.7.1 MU_ActivateInterpolatedPositionMode

Sets the «Interpolated Position Mode» as active operation mode.

Figure 5-100 MU_ActivateInterpolatedPositionMode

Variables

Variable	Name	Data Type		Unit -or-	
			Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers the activation of interpolated position mode.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-80 MU_ActivateInterpolatedPositionMode

5.2.7.2 MU_ClearIpmBuffer

Clears all PVT interpolation points from the IPM buffer.

Figure 5-101 MU_ClearIpmBuffer

Variables

Variable	Name D	Data Type		Unit -or-	
			Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* clears the interpolated position mode buffer.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-81 MU_ClearIpmBuffer

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbClear : MU_ClearIpmBuffer; (* fbClear is instance of MU_ClearIpmBuffer *)
END_VAR
(* Function Block call for clearing the interpolated position mode buffer*)
fbClear (Axis := myAxis, Execute := TRUE);
```

5.2.7.3 MU_AddPvtValues

Writes a PVT interpolation array to the IPM buffer.

Figure 5-102 MU_AddPvtValues

Variables

Variable	Name Da	Data Type		Unit -or-	
	Humo	Dutu Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	Position	ARRAY [164] OF DINT	-	-2'147'483'648+2'147'483'647	qc
	Velocity	ARRAY [164] OF DINT	-	±max. profile velocity	rpm
	TimeValue	ARRAY [164] OF USINT	-	0255	ms
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 A positive edge of *Execute* triggers a write operation of an array of PVT interpolation points to the IPM buffer.

Position, Velocity and Time contain the values to be written.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-82 MU_AddPvtValues

5.2.7.4 MU_AddPvtValue

Writes a PVT interpolation point to the IPM buffer.

Figure 5-103 MU AddPvtValue

Variables

Variable	Nomo	Data Tuna		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
*1)	Execute	BOOL	FALSE	TRUE, FALSE	-
	Position	DINT	-	-2'147'483'648+2'147'483'647	qc
input "	Velocity	DINT	-	±max. profile velocity	rpm
	TimeValue	USINT	-	0255	ms
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of a PVT interpolation point to the IPM buffer.

Position, Velocity and Time contain the values to be written.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-83 MU_AddPvtValue

Call

200);

5.2.7.5 MU_StartIpmTrajectory

Initiates an IPM trajectory.

Figure 5-104 MU_StartIpmTrajectory

Variables

Variable	Name	Data Type		Unit -or-	
			Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* starts the interpolated position mode trajectory.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-84 MU_StartIpmTrajectory
5.2.7.6 MU_StopIpmTrajectory

Stops an IPM trajectory.

Figure 5-105 MU_StopIpmTrajectory

Variables

Variable	Name Data T	Data Tuno	Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* stops the interpolated position mode trajectory.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-85 MU_StopIpmTrajectory

5.2.7.7 MU_GetIpmStatus

Reads the IPM status.

Figure 5-106 MU_GetIpmStatus

Variables

Variable	Namo	Data Tuno	Value		Unit -or-
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-
	UnderflowWarning	BOOL	FALSE	TRUE, FALSE	-
	OverflowWarning	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	VelocityWarning	BOOL	FALSE	TRUE, FALSE	-
	AccelWarning	BOOL	FALSE	TRUE, FALSE	-
	UnderflowError	BOOL	FALSE	TRUE, FALSE	-
	OverflowError	BOOL	FALSE	TRUE, FALSE	-
	VelocityError	BOOL	FALSE	TRUE, FALSE	-
	AccelError	BOOL	FALSE	TRUE, FALSE	-

 As long as *Enable* is TRUE (positive state), the values of the interpolated position mode status are continuously being read.

O) The values can be read from UnderflowWarning, OverflowWarning, VelocityWarning, Accel-Warning, UnderflowError, OverflowError, VelocityError and AccelError.

Table 5-86 MU_GetIpmStatus

5.2.7.8 MU_GetIpmTrajectoryStatus

Reads the status of the IPM trajectory.

Figure 5-107 MU_GetIpmTrajectoryStatus

Variables

Variable	Name Da	Data Tuna	Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
O (0)	Error	BOOL	FALSE	TRUE, FALSE	-
Output ³	ErrorID	DINT	0	For codes →page 8-144	-
	TargetReached	BOOL	FALSE	TRUE, FALSE	-

I) As long as *Enable* is TRUE (positive state), the values of the trajectory status are continuously being read.

O) The status values can be read from *TargetReached*.

Table 5-87 MU_GetIpmTrajectoryStatus

5.2.8 Inputs and Outputs

5.2.8.1 MU_GetAllDigitalInputs

Returns the state of all digital inputs.

Figure 5-108 MU_GetAllDigitalInputs

Variables

Variable	Namo Da	Data Tuno	Value		Unit -or-
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-
	GenPurpA	BOOL	FALSE	TRUE, FALSE	-
	GenPurpB	BOOL	FALSE	TRUE, FALSE	-
	GenPurpC	BOOL	FALSE	TRUE, FALSE	-
	GenPurpD	BOOL	FALSE	TRUE, FALSE	-
Output*())	GenPurpE	BOOL	FALSE	TRUE, FALSE	-
Output "	GenPurpF	BOOL	FALSE	TRUE, FALSE	-
	GenPurpG	BOOL	FALSE	TRUE, FALSE	-
	GenPurpH	BOOL	FALSE	TRUE, FALSE	-
	NegLimitSwitch	BOOL	FALSE	TRUE, FALSE	-
	PosLimitSwitch	BOOL	FALSE	TRUE, FALSE	-
	HomeSwitch	BOOL	FALSE	TRUE, FALSE	-
	PositionMarker	BOOL	FALSE	TRUE, FALSE	-
	DriveEnable	BOOL	FALSE	TRUE, FALSE	-

 As long as *Enable* is TRUE (positive state), the status of all digital inputs is continuously being read.

O The values of the objects can be read from *GenPurpA*, ..., *DriveEnable*.

Table 5-88 MU_GetAllDigitalInputs

maxon motor

Function Blocks Maxon Utility Function Blocks

5.2.8.2 MU_GetDigitalInput

Returns the state of a specific digital input.

Figure 5-109 MU_GetDigitalInput

Variables

Variable	Namo	Data Type		Unit -or-	
variable	Name		Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Enable	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	Purpose	INT	0	NegLimitSwitch = 0, PosLimitSwitch = 1, HomeSwitch = 2, PositionMarker = 3, Enable = 4, GenPurpH = 8, GenPurpG = 9, GenPurpF = 10, GenPurpE = 11, GenPurpD = 12, GenPurpC = 13, GenPurpB = 14, GenPurpA = 15	_
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
Output	ErrorID	DINT	0	For codes →page 8-144	-
	State	BOOL	FALSE	TRUE, FALSE	-

I) As long as *Enable* is TRUE (positive state), the status of a digital input is continuously being read.

Purpose defines the digital input to be read.

O The value of the object can be read from State.

Table 5-89 MU_GetDigitalInput

5.2.8.3 MU_GetAnalogInput

Returns the value of a specific analog input.

Figure 5-110 MU_GetAnalogInput

Variables

Variable	Nama	Data Tura	Value		Unit -or-
variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
••••••*!)	Enable	BOOL	FALSE	TRUE, FALSE	-
input '	Number	USINT	0	1, 2	-
	Done	BOOL	FALSE	TRUE, FALSE	-
O	Error	BOOL	FALSE	TRUE, FALSE	-
Output -/	ErrorID	DINT	0	For codes →page 8-144	-
	Value	DINT	0	05'000	mV
		able in TRUE (nor		the value of an analog input is con	

 As long as *Enable* is TRUE (positive state), the value of an analog input is continuously being read.

Number defines the analog input to be read.

O The value of the object can be read from Value.

Table 5-90 MU_GetAnalogInput

Call

fbGetAnalogInput(Axis := myAxis, Enable := TRUE, Number :=2);

5.2.8.4 MU_SetAllDigitalOutputs

Modifies the value of all digital outputs.

Figure 5-111 MU_SetAllDigitalOutputs

Variables

Variable	Nama Data Tuna	Data Tuno		Unit -or-	
valiable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
	GenPurpA	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	GenPurpB	BOOL	FALSE	TRUE, FALSE	-
	GenPurpC	BOOL	FALSE	TRUE, FALSE	-
	GenPurpD	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of all digital outputs.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-91 MU_SetAllDigitalOutputs

5.2.9 Position Marker

5.2.9.1 MU_ReadPositionMarkerCounter

Reads number of recorded position markers.

Figure 5-112 MU_ReadPositionMarkerCounter

Variables

Variable	Name D	Data Type		Unit -or-	
			Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
O	Error	BOOL	FALSE	TRUE, FALSE	-
Output ⁹	ErrorID	DINT	0	For codes →page 8-144	-
	Count	UINT	0	03	-

- As long as *Enable* is TRUE (positive state), the value of the position marker counter is continuously being read.
- O) The value of the object can be read from Count.

Table 5-92 MU_ReadPositionMarkerCounter

Call

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbRead : MU_ReadPositionMarkerCounter; (* fbRead is instance of MU_ReadPositionMarker-
Counter *)
END_VAR
(* Function Block call for reading the position marker counter *)
```

fbRead (Axis := myAxis, Enable := TRUE);

5.2.9.2 MU_ReadCapturedPosition

Reads a recorded position marker.

Figure 5-113 MU_ReadCapturedPosition

Variables

Namo Data Typo		Unit -or-		
Name	Data Type	Default	Range	Element [Type]
Axis	AXIS_REF	0	031	AxisNo [USINT]
Enable	BOOL	FALSE	TRUE, FALSE	-
CountIndex	UINT	0	0Count−1 (→page 5-117)	-
Done	BOOL	FALSE	TRUE, FALSE	-
Error	BOOL	FALSE	TRUE, FALSE	-
ErrorID	DINT	0	For codes →page 8-144	-
CapturedPosition	DINT	0	-2'147'483'648+2'147'483'647	qc
	Name Axis Enable CountIndex Done Error ErrorID CapturedPosition	NameData TypeAxisAXIS_REFEnableBOOLCountIndexUINTDoneBOOLErrorBOOLErrorlDDINTCapturedPositionDINT	NameData TypeDefaultAxisAXIS_REF0EnableBOOLFALSECountIndexUINT0DoneBOOLFALSEErrorBOOLFALSEErrorIDDINT0CapturedPositionDINT0	NameData TypeValueDefaultDefaultRangeAxisAXIS_REF0031EnableBOOLFALSETRUE, FALSECountIndexUINT00Count-1 (>page 5-117)DoneBOOLFALSETRUE, FALSEErrorBOOLFALSETRUE, FALSEErrorIDDINT0For codes >page 8-144CapturedPositionDINT0-2'147'483'648+2'147'483'647

I) As long as *Enable* is TRUE (positive state), the value of the captured position is continuously being read.

O) The value of the object can be read from CapturedPosition.

Table 5-93 MU_ReadCapturedPosition

5.2.9.3 MU_ResetCapturedPosition

Resets a recorded position marker.

Figure 5-114 MU_ResetCapturedPosition

Variables

Variable	Name Data T	Data Tuno	Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a reset of the captured position.

O) Successful operation is signalled with a positive value (TRUE) at Done.

 Table 5-94
 MU_ResetCapturedPosition

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbReset : MU_ResetCapturedPosition; (* fbReset is instance of MU_ResetCapturedPosition
*)
END_VAR
(* Function Block call for a reset of the captured position *)
fbReset (Axis := myAxis, Execute := TRUE);
```

5.2.10 Position Compare

5.2.10.1 MU_EnablePositionCompare

Activates the «Position Compare» function.

Figure 5-115 MU_EnablePositionCompare

Variables

Variable	Name	Data Type		Unit -or-	
			Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers activation of position compare functionality.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-95 MU_EnablePositionCompare

5.2.10.2 MU_DisablePositionCompare

Deactivates the «Position Compare» function.

Figure 5-116 MU_DisablePositionCompare

Variables

Variable	Name Data T	Data Tuno	Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers deactivation of position compare functionality.

O) Successful operation is signalled with a positive value (TRUE) at *Done*.

```
Table 5-96 MU_DisablePositionCompare
```

Call

fbDisable (Axis := myAxis, Execute := TRUE);

5.2.10.3 MU_SetPositionCompareRefPos

Sets the reference position for the «Position Compare» function.

Figure 5-117 MU SetPositionCompareRefPos

Variables

Variable	Nama Data Tura	Data Tuno	Value Value		
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
••••••* [*])	Execute	BOOL	FALSE	TRUE, FALSE	-
input ''	ReferencePosition	DINT	0	-2'147'483'648+2'147'483'647	qc
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of the position compare reference position. *ReferencePosition* contains the value to be written.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-97 MU_SetPositionCompareRefPos

Call

fbSet (Axis := myAxis, Execute := TRUE, ReferencePosition := 1000);

5.2.11 Error Handling

5.2.11.1 MU_GetDeviceErrorCount

Returns the number of actual errors.

Figure 5-118 MU_GetDeviceErrorCount

Variables

Variable	Name Data T		Value		Unit -or-
		Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
Input ^{*I)}	Enable	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
O	Error	BOOL	FALSE	TRUE, FALSE	-
Output "	ErrorID	DINT	0	For codes →page 8-144	-
	Count	UDINT	0	0255	-

- I) As long as *Enable* is TRUE (positive state), the number of existing errors is continuously being read.
- O) The actual number of existing errors can be read from Count.
- Table 5-98 MU_GetDeviceErrorCount

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbGetDeviceErrorCount : MU_GetDeviceErrorCount; (* fbGetDeviceErrorCount is instance
of MU_GetDeviceErrorCount *)
END_VAR
(* Function Block call for reading the number of existing errors *)
fbGetDeviceErrorCount(Axis := myAxis, Enable := TRUE);
```

5.2.11.2 MU_GetDeviceError

Returns the error code of a specific entry in the error history.

Figure 5-119 MU_GetDeviceError

Variables

Variable	Nama		Value		Unit -or-
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
•* ^{*)}	Enable	BOOL	FALSE	TRUE, FALSE	-
input '/	Number	USINT	1	1count (→page 5-123)	-
	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	ErrorID	DINT	0	For codes →page 8-144	-
	DeviceError	UDINT	0	→separate document «EPOS2 Firmware Specification»	-

I) As long as *Enable* is TRUE (positive state), the error code of a specific entry in the error history is continuously being read.

O) The error code can be read from DeviceError.

Table 5-99 MU_GetDeviceError

Call

fbGetDeviceErrorCount(Axis := myAxis, Enable := TRUE, Number := 2);

5.2.12 Object Access

5.2.12.1 MU_GetObject

Returns the value of an EPOS object.

Variables

Variable	Nome			Unit -or-	
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Enable	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	Index	UINT	0	→separate document «EPOS2 Firmware Specification»	-
	SubIndex	USINT	0	→separate document «EPOS2 Firmware Specification»	-
	Done	BOOL	FALSE	TRUE, FALSE	-
O	Error	BOOL	FALSE	TRUE, FALSE	-
Output ⁹	ErrorID	DINT	0	For codes →page 8-144	-
	Value	UDINT	0	04'294'967'265	-

- As long as *Enable* is TRUE (positive state), the values of the EPOS homing objects are continuously being read.
- Index and SubIndex define the object to be read.
- O) The value of the object can be read from the Value.

Table 5-100 MU_GetObject

Call

fbGetObject(Axis := myAxis, Enable := TRUE, Index := 16#2003, SubIndex := 16#01);

5.2.12.2 MU_SetObject

Modifies the value of an EPOS object.

Figure 5-121 MU_SetObject

Variables

Variable	Nama	Data Tuna		Unit -or-	
Variable	Name	Data Type	Default	Range	Element [Type]
Input/Output	Axis	AXIS_REF	0	031	AxisNo [USINT]
	Execute	BOOL	FALSE	TRUE, FALSE	-
- *1)	Index	UINT	0	→separate document «EPOS2 Firmware Specification»	-
input "	SubIndex	USINT	0	→separate document «EPOS2 Firmware Specification»	-
	Value	UDINT	0	04'294'967'265	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a write operation of a specific EPOS object. *Index* and *SubIndex* define the object to be modified.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-101 MU_SetObject

5.2.13 Data Handling

5.2.13.1 MU_Selection

Selects between two values.

Variables

Variable	Namo			Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
	In1	BOOL	FALSE	TRUE, FALSE	-
••••••*!)	ValueIn1	DINT	0	-2'147'483'648+2'147'483'647	-
input ''	In2	BOOL	FALSE	TRUE, FALSE	-
	ValueIn2	DINT	0	-2'147'483'648+2'147'483'647	-
Output ^{*O)}	Out	BOOL	FALSE	TRUE, FALSE	-
	ValueOut	DINT	0	-2'147'483'648+2'147'483'647	-

I) In1 selects ValueIn1, In2 selects ValueIn2. If In1 and In2 are TRUE, In1 is prioritized.

O) Out indicates a valid value of ValueOut.

Table 5-102 MU_Selection

Call

fbSelection(In1 := TRUE, ValueIn1 := 2000, In2 := FALSE, ValueIn2 := 1000);

5.2.13.2 MU_GetBitState

Extracts the state of a specific bit.

Figure 5-123 MU_GetBitState

Variables

Variable	Nama	Data Tuna	Value		Unit -or-
Variable	Name	Data Type	Default	Range	Element [Type]
	Enable	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	Value	DINT	0	-2'147'483'648+2'147'483'647	qc
	BitNumber	USINT	0	031	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output [*] O)	Error	BOOL	FALSE	TRUE, FALSE	-
Output ⁹	ErrorID	DINT	0	For codes →page 8-144	-
	State	BOOL	FALSE	TRUE, FALSE	-

I) As long as *Enable* is TRUE (positive state), the state of a specific bit within *Value* is continuously being read.

O) The state can be read from State.

Table 5-103 MU_GetBitState

5.2.13.3 MU_SetBitState

Modifies the state of a specific bit within a given value.

Figure 5-124 MU_SetBitState

Variables

Variable	Nama	Data Tuna		Unit -or-	
	Name	Data Type	Default	Range	Element [Type]
Input/Output	Value	DINT	0	-2'147'483'648+2'147'483'647	-
	Execute	BOOL	FALSE	TRUE, FALSE	-
Input ^{*I)}	BitNumber	USINT	0	031	-
	State	BOOL	FALSE	TRUE, FALSE	-
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

I) A positive edge of *Execute* triggers a read operation of the state of a specific bit within *Value*. *BitNumber* defines the bit to be written with the value in *State*.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-104 MU_SetBitState

```
(* Variable Declaration *)
VAR
fbSetBitState : MU_SetBitState; (* fbSetBitState is instance of MU_SetBitState *)
END_VAR
(* Function Block call for writing bit 2 of Value with state = TRUE*)
fbSetBitState(Execute := TRUE, Value := 2#10010000, BitNumber := 2, State := TRUE);
(* Content of variable Value before Function Block call: 2#1001000*)
(* Content of variable Value after Function Block call: 2#10010100*)
```

5.2.13.4 MU_DataRecorder

Records data cyclic into a ring buffer.

Figure 5-125 MU DataRecorder

Variables

Variable	Nama	Data Tuna		Value		
Variable	Name	Data Type	Default	Range	Element [Type]	
	Execute	BOOL	FALSE	TRUE, FALSE RisingE = Start FallingE = Stop	-	
Input ^{*)}	Trigger	BOOL	FALSE	TRUE, FALSE	-	
	Sample	UDINT		04'294'967'295	-	
	SamplingPeriod	UINT		065'535	[cycle]	
	PrecedingSamples	UINT		065'535	[sample]	
	Done	BOOL	FALSE	TRUE, FALSE	-	
	Error	BOOL	FALSE	TRUE, FALSE	-	
Output ^{*O)}	ErrorID	DINT	0	For codes →page 8-144	-	
ouput	DataVector	ARRAY [11000] OF UDINT		04'294'967'295	-	

- I) A positive edge of *Execute* starts the data recorder, a negative edge of *Execute* stops the data recorder immediately.
 - A positive edge of *Trigger* triggers an event to stop the data recorder, but recording will be continued until the buffer is full.
 - Sample contains the value to be recorded.
 - SamplingPeriod determines the sampling rate as a factor of a program cycle.
 - *PrecedingSamples* determines the number of samples in the output data vector before the trigger event.
- O) After a positive value (TRUE) at Done, the recorded data is available in Data Vector.
- Table 5-105 MU_DataRecorder

5.3 CANopen CiA 301 Function Blocks

5.3.1 CAN_Nmt

Permits change of network management state of a CANopen device.

Figure 5-126 CAN Nmt

Variables

Variable	Nama	Data Turna		Unit -or-	
variable	Name	Data Type	Default	Range	Element [Type]
	Execute	BOOL	FALSE	TRUE, FALSE	-
	Device	USINT	0	0127	-
. *1)	Port	USINT	1	1 = CAN-I 2 = CAN-S	-
Input ^{*i)}	State	USINT	0	1 = Start Remote Node 2 = Stop Remote Node 128 = Enter Pre-Operational 129 = Reset Node 130 = Reset Communication	_
	Done	BOOL	FALSE	TRUE, FALSE	-
Output ^{*O)}	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-
	I) A positive edg	e of <i>Execute</i> trigg	ers the NM	IT service operation. The network m	anagement state

A positive edge of *Execute* triggers the NMT service operation. The network management state of the defined device is changed.

Device corresponds to the CAN Node-ID. A *Device* value of 0 changes the NMT state of all devices in the network selected by the *Port*.

Port distinguishes between Internal Network (CAN-I) and Slave Network (CAN-S). *State* is define by CANopen (\rightarrow CANopen specification).

O) Successful operation is signalled with a positive value (TRUE) at Done.

```
Table 5-106 CAN_Nmt
```

maxon motor

Function Blocks CANopen CiA 301 Function Blocks

5.3.2 CAN_SdoRead

Permits reading of a CANopen object using the SDO protocol.

Figure 5-127 CAN_SdoRead

Important!

Execution of the instance might take longer than one PLC cycle (→page 5-49).

Variables

Variable	Namo	Data Tuno		Unit -or-	
variable	Name	Data Type	Default	Range	Element [Type]
	Enable	BOOL	FALSE	TRUE, FALSE	-
	Device	USINT	0	0127 (Node ID)	-
Input ^{*I)}	Port	USINT	1	1 = CAN-I 2 = CAN-S	-
input	Index	UINT	0	→separate document «EPOS2 Firmware Specification»	-
	SubIndex	USINT	0	→separate document «EPOS2 Firmware Specification»	-
	Done	BOOL	FALSE	TRUE, FALSE	-
O utout*0)	Error	BOOL	FALSE	TRUE, FALSE	-
Output ⁽⁵⁾	ErrorID	DINT	0	For codes →page 8-144	-
	Data	UDINT	0	04'294'967'295	-

- As long as *Enable* is TRUE (positive state), the value of a specified CANopen object is continuously being read.
 The object is specified by *Index* and *SubIndex*.
 Device corresponds to the CAN Node-ID.
 - Port distinguishes between Internal Network (CAN-I) and Slave Network (CAN-S).
 - The value of the object can be read from Data.

Table 5-107 CAN_SdoRead

Call

0

```
(* Variable Declaration *)
VAR
fbSdoRead : CAN_SdoRead; (* fbSdoRead is instance of CAN_SdoRead *)
END_VAR
(* Function Block call for reading the CANopen object 'DeviceType' *)
fbSdoRead (Enable := TRUE, Device := 1, Port := 0, Index := 16#1000, SubIndex :=
16#00);
```

5.3.3 CAN_SdoWrite

Permits writing of a CANopen object using the SDO protocol.

Figure 5-128 CAN_SdoWrite

Important!

Execution of the instance might take longer than one PLC cycle (>page 5-49).

Variables

Variable	Name	Data Type	Default	Value	Unit –or– Element [Type]
	Execute	BOOL	FALSE	TRUE, FALSE	_
	Device	USINT	0	0127 (Node ID)	-
Input ^{*I)}	Port	USINT	1	1 = CAN-I 2 = CAN-S	-
	Index	UINT	0	→separate document «EPOS2 Firmware Specification»	-
	SubIndex	USINT	0	→separate document «EPOS2 Firmware Specification»	-
	Data	UDINT	0	04'294'967'295	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 A positive edge of *Execute* triggers the write operation of a CANopen object. The object is specified by *Index* and *SubIndex*. *Device* corresponds to the CAN Node-ID.

Port distinguishes between Internal Network (CAN-I) and Slave Network (CAN-S).

Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-108 CAN_SdoWrite

Call

O)

```
(* Variable Declaration *)
(* Variable Declaration *)
VAR
fbSdoWrite : CAN_SdoWrite; (* fbSdoWrite is instance of CAN_SdoWrite *)
END_VAR
(* Function Block call for writing the CANopen object 'GuardTime' *)
fbSdoWrite (Execute := TRUE, Device := 1, Port := 0, Index := 16#100C, SubIndex :=
16#00, Data := 100);
```

Function Blocks CANopen CiA 301 Function Blocks

5.3.4 CAN_SetTxPdoEvent

Triggers a PDO of transmission type 254.

Figure 5-129 CAN_SetTxPdoEvent

Variables

Variable	Name	Data Type		Unit -or-	
			Default	Range	Element [Type]
Input ^{*I)}	Execute	BOOL	FALSE	TRUE, FALSE	-
	Port	USINT	1	1 = CAN-I 2 = CAN-S	-
	TxPdoNumber	USINT	14 132	CAN-I: PDO1PDO4 CAN-S: PDO1PDO32	-
Output ^{*O)}	Done	BOOL	FALSE	TRUE, FALSE	-
	Error	BOOL	FALSE	TRUE, FALSE	-
	ErrorID	DINT	0	For codes →page 8-144	-

 A positive edge of *Execute* triggers a transmission of a TxPDO specified by TxPdoNumber. *Port* distinguishes between Internal Network (CAN-I) and Slave Network (CAN-S). *TxPdoNumber* defines number of PDO.

O) Successful operation is signalled with a positive value (TRUE) at Done.

Table 5-109 CAN_SetTxPdoEvent

```
(* Variable Declaration *)
VAR
fbSetEvent : MC_SetTxPdoEvent; (* fbSetEvent is instance of MC_SetTxPdoEvent *)
END_VAR
(* Function Block call for triggering a TxPDO1 transmission on port 2*)
fbSetEvent (Execute := TRUE, Port := 2, TxPdoNumber := 1);
```

6 Markers

Markers are typically used to build intermediate results. They will be buffered in the PLC and do not have direct influence to the outputs. By using markers, extensive operations can be essentially simplified. Further, they act as transmitter between different modules.

EPOS2 P uses specific marker areas for error and warning information.

6.1 User Marker Area

Length is 25 entries (32-bit values), write or read are supported. To access a marker variable, IEC 61131 direct addressing method is used.

IEC 61131 declaration example with UDINT variables:

UserMarkerVariable0	AT	%MD0.0 : UDINT;
UserMarkerVariable1	AT	%MD4.0 : UDINT;
UserMarkerVariable2	AT	%MD8.0 : UDINT;
UserMarkerVariable3	AT	%MD12.0 :UDINT;
UserMarkerVariable4	AT	%MD16.0 : UDINT;
UserMarkerVariable5	AT	%MD20.0 : UDINT;
UserMarkerVariable6	AT	%MD24.0 : UDINT;
UserMarkerVariable7	AT	%MD28.0 : UDINT;
UserMarkerVariable8	AT	%MD32.0 : UDINT;
UserMarkerVariable9	AT	%MD36.0 : UDINT;
UserMarkerVariable10	AT	%MD40.0 : UDINT;
UserMarkerVariable11	AT	%MD44.0 : UDINT;
UserMarkerVariable12	AT	%MD48.0 : UDINT;
UserMarkerVariable13	AT	%MD52.0 : UDINT;
UserMarkerVariable14	AT	%MD56.0 : UDINT;
UserMarkerVariable15	AT	%MD60.0 : UDINT;
UserMarkerVariable16	AT	%MD64.0 : UDINT;
UserMarkerVariable17	AT	%MD68.0 : UDINT;
UserMarkerVariable18	AT	%MD72.0 : UDINT;
UserMarkerVariable19	AT	%MD76.0 : UDINT;
UserMarkerVariable20	AT	%MD80.0 : UDINT;
UserMarkerVariable21	AT	%MD84.0 : UDINT;
UserMarkerVariable22	AT	%MD88.0 : UDINT;
UserMarkerVariable23	AT	%MD92.0 : UDINT;
UserMarkerVariable24	AT	%MD96.0 : UDINT;

Table 6-110User Marker Variables – Examples

Markers Marker Global Status Register

6.2 Marker Global Status Register

Length is 25 entries (32-bit values), write or read are supported. It holds the EPOS2 P global status register and is identical to the EPOS2 P CANopen object 0x1002.

Bit 0 to bit 7 represent an overview of the CANopen slave error registers. If a connected CANopen slaves reports an error register flag, the according bit will be set. For the meaning of CANopen error register, please refer to the connected CANopen slave's object description (object error register with index 0x1001 and subindex 0).

Bit	Description
0	One of the connected slaves is signalling a generic error bit in error register
1	One of the connected slaves is signalling a current error bit in error register
2	One of the connected slaves is signalling a voltage error bit in error register
3	One of the connected slaves is signalling a temperature error bit in error register
4	One of the connected slaves is signalling a communication error bit in error register
5	One of the connected slaves is signalling a device profile specific error bit in error register
6	Reserved
7	One of the connected slaves is signalling a manufacturer specific error bit in error register
815	Copy of error register
16	Master generic warning
1719	Not used
20	Master communication warning
2122	Not used
23	Master manufacturer specific warning
2431	Not used

Table 6-111 Global Status Register Markers

IEC 61131 declaration example with BOOL variables:

ERR_mEposGenericError	AT	%M100.0 : BOOL;
ERR_mEposCurrentError	AT	%M100.1 : BOOL;
ERR_mEposVoltageError	AT	%M100.2 : BOOL;
ERR_mEposTemperatureError	AT	%M100.3 : BOOL;
ERR_mEposCommunicationError	AT	%M100.4 : BOOL;
ERR_mEposMotionError	AT	%M100.7 : BOOL;

Table 6-112 Global Status Register Markers – Examples

6.3 Marker Global Axis Error Register

Length is 32-bit. It holds the EPOS2 P global status register and is identical to the EPOS2 P CANopen object 0x1002.

Bit 0 to Bit 7 represents an overview of the CANopen slave error register's. If one of the connected CANopen slave reports an error register flag, the according bit is set.

For the meaning of CANopen error register please refer to the object description of the connected CANopen slave (object error register with index 0x1001 and subindex 0).

Bit	Description
0	Axis 0 is in error state
1	Axis 1 is in error state
2	Axis 2 is in error state

maxon motor

Bit	Description
n	Axis n is in error state
31	Axis 31 is in error state
Table 6-11	3 Global Axis Error Register Markers

IEC 61131 declaration example with BOOL variables:

ERR_mAxis0Error	AT	%M104.0 : BOOL;
ERR_mAxis1Error	AT	%M104.1 : BOOL;
ERR_mAxis2Error	AT	%M104.2 : BOOL;
ERR_mAxis3Error	AT	%M104.3 : BOOL;
ERR_mAxis4Error	AT	%M104.4 : BOOL;
ERR_mAxis5Error	AT	%M104.5 : BOOL;
ERR_mAxis6Error	AT	%M104.6 : BOOL;
ERR_mAxis7Error	AT	%M104.7 : BOOL;
ERR_mAxis8Error	AT	%M105.0 : BOOL;
ERR_mAxis9Error	AT	%M105.1 : BOOL;
ERR_mAxis10Error	AT	%M105.2 : BOOL;
ERR_mAxis11Error	AT	%M105.3 : BOOL;
ERR_mAxis12Error	AT	%M105.4 : BOOL;
ERR_mAxis13Error	AT	%M105.5 : BOOL;
ERR_mAxis14Error	AT	%M105.6 : BOOL;
ERR_mAxis15Error	AT	%M105.7 : BOOL;
ERR_mAxis16Error	AT	%M106.0 : BOOL;
ERR_mAxis17Error	AT	%M106.1 : BOOL;
ERR_mAxis18Error	AT	%M106.2 : BOOL;
ERR_mAxis19Error	AT	%M106.3 : BOOL;
ERR_mAxis20Error	AT	%M106.4 : BOOL;
ERR_mAxis21Error	AT	%M106.5 : BOOL;
ERR_mAxis22Error	AT	%M106.6 : BOOL;
ERR_mAxis23Error	AT	%M106.7 : BOOL;
ERR_mAxis24Error	AT	%M107.0 : BOOL;
ERR_mAxis25Error	AT	%M107.1 : BOOL;
ERR_mAxis26Error	AT	%M107.2 : BOOL;
ERR_mAxis27Error	AT	%M107.3 : BOOL;
ERR_mAxis28Error	AT	%M107.4 : BOOL;
ERR_mAxis29Error	AT	%M107.5 : BOOL;
ERR_mAxis30Error	AT	%M107.6 : BOOL;
ERR_mAxis31Error	AT	%M107.7 : BOOL;

Table 6-114 Global Axis Error Register Markers – Examples

6.4 Reserved Marker Area

Length is 23 entries (32-bit values). Reserved for future use.

Markers

CANopen Slave Error Register Area

6.5 CANopen Slave Error Register Area

Length is 128 entries (8-bit values). It represents the CANopen error register of the connected slave. For the meaning of CANopen error register please refer to the object description of the connected CANopen slave (error register with index 0x1001 and subindex 0).

IEC 61131 declaration example with USINT variables:

ERR_mErrorRegisterInternalEPOS	AT	%MB200.0 : USINT;
ERR_mErrorRegisterCANopenSlave1	AT	%MB201.0 : USINT;
ERR_mErrorRegisterCANopenSlave2	AT	%MB202.0 : USINT;
	AT	
ERR_mErrorRegisterCANopenSlave127	AT	%MB327.0 : USINT;

Table 6-115 CANopen Slave Error Register Markers – Examples 1

IEC 61131 declaration example with BOOL variables for EPOS slaves (sample internal EPOS):

ERR_mInternalEposGenericError	AT	%M200.0 : BOOL;
ERR_mInternalEposCurrentError	AT	%M200.1 : BOOL;
ERR_mInternalEposVoltageError	AT	%M200.2 : BOOL;
ERR_mInternalEposTemperatureError	AT	%M200.3 : BOOL;
ERR_mInternalEposCommunicationError	AT	%M200.4 : BOOL;

Table 6-116 CANopen Slave Error Register Markers – Examples 2

maxon motor

7 Process I/Os

Process inputs and outputs are used to read incoming or write outgoing CANopen PDOs. Nevertheless, before this communication method can be used, PDO configuration will be required. For details → chapter "4.3 Network Configuration" on page 4-27.

Best Practice

- Use PDO communication for powerful and easy data exchange to read/write direct addressed variables.
- Use the "Network Configuration Tool" to setup PDO communication and to employ Functional Blocks (→chapter "5 Function Blocks" on page 5-49).

7.1 Internal Network

7.1.1 Process Inputs

Direct Input Variables Internal Network (Communication)

Quantity	Туре	Address (BUS 1)	Description
4	SINT	AT %IB 1.0.0.0 - 1.0.3.0	Signed 8-Bit variable
4	USINT	AT %IB 1.1.0.0 - 1.1.3.0	Unsigned 8-Bit variable
4	INT	AT %IW 1.2.0.0 - 1.2.6.0	Signed 16-Bit variable
4	UINT	AT %IW 1.3.0.0 - 1.3.6.0	Unsigned 16-Bit variable
4	DINT	AT %ID 1.4.0.0 - 1.4.12.0	Signed 32-Bit variable
4	UDINT	AT %ID 1.5.0.0 - 1.5.12.0	Unsigned 32-Bit variable
2	LINT	AT %IL 1.6.0.0 - 1.6.8.0	Signed 64-Bit variable
2	ULINT	AT %IL 1.7.0.0 - 1.7.8.0	Unsigned 64-Bit variable

 Table 7-117
 Input Network Variables (IEC-61131 Program)

Process Input Objects Internal Network

Туре	Index, Subindex	Description
INT8	0xA000, 0x010x10	Signed 8-Bit object
UINT8	0xA040, 0x010x10	Unsigned 8-Bit object
INT16	0xA0C0, 0x010x10	Signed 16-Bit object
UINT16	0xA100, 0x010x10	Unsigned 16-Bit object
INT32	0xA1C0, 0x010x10	Signed 32-Bit object
UINT32	0xA200, 0x010x10	Unsigned 32-Bit object
INT64	0xA400, 0x010x10	Signed 64-Bit object
UINT64	0xA440, 0x010x10	Unsigned 64-Bit object
	Type INT8 UINT8 INT16 UINT16 INT32 UINT32 UINT64 UINT64	Type Index, Subindex INT8 0xA000, 0x010x10 UINT8 0xA040, 0x010x10 INT16 0xA0C0, 0x010x10 UINT16 0xA100, 0x010x10 INT32 0xA1C0, 0x010x10 UINT32 0xA200, 0x010x10 INT64 0xA400, 0x010x10 UINT64 0xA4400, 0x010x10

Table 7-118

Process Input Objects (Object Dictionary)

7.1.2 Process Outputs

Direct Output Variables Internal Network (Communication)

Quantity	Туре	Address (BUS 1)	Description
4	SINT	AT %QB 1.0.0.0 - 1.0.3.0	Signed 8-Bit variable
4	USINT	AT %QB 1.1.0.0 - 1.1.3.0	Unsigned 8-Bit variable
4	INT	AT %QW 1.2.0.0 - 1.2.6.0	Signed 16-Bit variable
4	UINT	AT %QW 1.3.0.0 - 1.3.6.0	Unsigned 16-Bit variable
4	DINT	AT %QD 1.4.0.0 - 1.4.12.0	Signed 32-Bit variable
4	UDINT	AT %QD 1.5.0.0 - 1.5.12.0	Unsigned 32-Bit variable
2	LINT	AT %QL 1.6.0.0 - 1.6.8.0	Signed 64-Bit variable
2	ULINT	AT %QL 1.7.0.0 - 1.7.8.0	Unsigned 64-Bit variable

Table 7-119 Output Network Variables (IEC-61131 Program)

Process Output Objects Internal Network

Quantity	Туре	Index, Subindex	Description
4	INT8	0xA480, 0x010x10	Signed 8-Bit object
4	UINT8	0xA4C0, 0x010x10	Unsigned 8-Bit object
4	INT16	0xA540, 0x010x10	Signed 16-Bit object
4	UINT16	0xA580, 0x010x10	Unsigned 16-Bit object
4	INT32	0xA640, 0x010x10	Signed 32-Bit object
4	UINT32	0xA680, 0x010x10	Unsigned 32-Bit object
2	INT64	0xA880, 0x010x10	Signed 64-Bit object
2	UINT64	0xA8C0, 0x010x10	Unsigned 64-Bit object

Table 7-120 Process Output Objects (Object Dictionary)

7.2 Slave Network

7.2.1 Process Inputs

Direct Input Variables Slave Network (Communication)

Quantity	Туре	Address (BUS 2)	Description
64	SINT	AT %IB 2.0.0.0 - 2.0.63.0	Signed 8-Bit variable
64	USINT	AT %IB 2.1.0.0 - 2.1.63.0	Unsigned 8-Bit variable
64	INT	AT %IW 2.2.0.0 - 2.2.126.0	Signed 16-Bit variable
64	UINT	AT %IW 2.3.0.0 - 2.3.126.0	Unsigned 16-Bit variable
64	DINT	AT %ID 2.4.0.0 - 2.4.252.0	Signed 32-Bit variable
64	UDINT	AT %ID 2.5.0.0 - 2.5.252.0	Unsigned 32-Bit variable
32	LINT	AT %IL 2.6.0.0 - 2.6.248.0	Signed 64-Bit variable
32	ULINT	AT %IL 2.7.0.0 - 2.7.248.0	Unsigned 64-Bit variable

Table 7-121 Input Network Variables (IEC-61131 Program)

Process Input Objects Slave Network

Quantity	Туре	Index, Subindex	Description
64	INT8	0xA000, 0x010x10	Signed 8-Bit object
64	UINT8	0xA040, 0x010x10	Unsigned 8-Bit object
64	INT16	0xA0C0, 0x010x10	Signed 16-Bit object
64	UINT16	0xA100, 0x010x10	Unsigned 16-Bit object
64	INT32	0xA1C0, 0x010x10	Signed 32-Bit object
64	UINT32	0xA200, 0x010x10	Unsigned 32-Bit object
32	INT64	0xA400, 0x010x10	Signed 64-Bit object
32	UINT64	0xA440, 0x010x10	Unsigned 64-Bit object

Table 7-122 Process Input Objects (Object Dictionary)

7.2.2 Process Outputs

Direct Output Variables Slave Network (Communication)

Quantity	Туре	Address (BUS 2)	Description
64	SINT	AT %QB 2.0.0.0 - 2.0.15.0	Signed 8-Bit variable
64	USINT	AT %QB 2.1.0.0 - 2.1.15.0	Unsigned 8-Bit variable
64	INT	AT %QW 2.2.0.0 - 2.2.31.0	Signed 16-Bit variable
64	UINT	AT %QW 2.3.0.0 - 2.3.31.0	Unsigned 16-Bit variable
64	DINT	AT %QD2.4.0.0 - 2.4.61.0	Signed 32-Bit variable
64	UDINT	AT %QD2.5.0.0 - 2.5.61.0	Unsigned 32-Bit variable
32	LINT	AT %QL2.6.0.0 - 2.6.120.0	Signed 64-Bit variable
32	ULINT	AT %QL2.7.0.0 - 2.7.120.0	Unsigned 64-Bit variable

Table 7-123 Output Network Variables (IEC-61131 Program)

Process Output Objects Slave Network

Quantity	Туре	Index, Subindex	Description
64	INT8	0xA480, 0x01-0x10	Signed 8-Bit object
64	UINT8	0xA4C0, 0x01-0x10	Unsigned 8-Bit object
64	INT16	0xA540, 0x01-0x10	Signed 16-Bit object
64	UINT16	0xA580, 0x01-0x10	Unsigned 16-Bit object
64	INT32	0xA640, 0x01-0x10	Signed 32-Bit object
64	UINT32	0xA680, 0x01-0x10	Unsigned 32-Bit object
32	INT64	0xA880, 0x01-0x10	Signed 64-Bit object
32	UINT64	0xA8C0, 0x01-0x10	Unsigned 64-Bit object

Table 7-124 Process Output Objects (Object Dictionary)

8 Error Handling

8.1 Programming Environment Error Codes

Programming environment errors (which also include warnings) will be displayed in a popup window, provided that the programming tool is active. They will have the following effects:

- An error will stop the application program.
- A warning will only be signalled, but does not stop the application program.

Error Code	Description	Comment
1002	Out of program memory Program execution not possible	Program is to big – try with size only
1004	No valid program	
1005	Download of invalid data	Download incomplete / logical error
1006	Configuration error / wrong program	
1008	Invalid program number	
1009	Invalid segment number	
1011	Segment already on PLC	
1012	No free watch ID available	Watch table is already full
1013	Invalid command received	
1014	Action not valid. Switch to maintenance first	Operation not allowed in current mode
1015	General network error	Communication error on service interface
1016	Accepted receipt too small	Communication error on service interface
1018	Timer task error	Previous timer task processing was not already finished
1020	Error calling kernel	Error at call of interpreter
1021	Error calling native code	Error at execution of native code
1900	Retain variable handling failed	Too many retain variables or hardware error
1901	NMT boot up error, check CAN configuration	→EPOS2 P error history for details
1903	One or more slave configuration wrong	Configuration date or time does not match
1904	Problem with persistence memory	Warning only
1905	CAN communication error	→EPOS2 P error history for details
1908	System was reset by watchdog	Warning only ^{*1)}
1909	Interrupt Task error	Previous interrupt processing has not yet finished
1911	Execution error: data or program exception	Fatal application processing error
1913	Data History Buffer Overrun	Warning from CDA (sampling rate and/or number of variables should be reduced)
2001	RUN TIME ERROR: division by zero	
2002	RUN TIME ERROR: invalid array index	
2003	RUN TIME ERROR: invalid opcode	Unsupported command

maxon motor

Error Handling

Motion Control Function Blocks Error Codes

Error Code	Description	Comment
2004	RUN TIME ERROR: opcode not supported	Unsupported command
2005	RUN TIME ERROR: invalid extension	Unsupported command
2006	RUN TIME ERROR: unknown command	Unsupported command
2008	Invalid bit reference	Runtime error
2009	Error restoring data	Runtime error
2010	Invalid array element size	Runtime error
2011	Invalid struct size	Runtime error
2012	RUN TIME ERROR: modulo zero, result undefined	

Remark

1) «EPOS Studio» also uses the watchdog to reset the node. Therefore, this warning may also be triggered as the EPOS Studio manipulates the EPOS2 P.

Table 8-125 Error Codes – Programming Environment

8.2 Motion Control Function Blocks Error Codes

Motion control function blocks can return internal error codes as well as error codes (e.g. communication aborted) of the accessed slaves.

Error Code	Description	Comment
0x0000 0000	No error	
0x0000 0001	Internal function block sequence error	
11	Communication abort codes of the connected slave are inserted here (related to CiA 301, CiA 402, etc).	→separate document «EPOS2 Firmware Specification»
0x0F00 FFC0	The device is in wrong NMT state	
0x0FFF FFF0	CAN communication sequence error	
0x0FFF FFF1	Communication aborted by CAN driver	
0x0FFF FFF2	Communication buffer overflow	
0x0FFF FFF9	Segmented transfer communication error	
0x0FFF FFFA	Wrong axis number	Not in range of 031
0x0FFF FFFB	Wrong device number	Not in range of 1127
0x0FFF FFFC	Wrong CAN port	Not 1 or 2
0x0FFF FFFD	Bad function calling parameters	
0x0FFF FFFE	General CAN communication error	
0x0FFF FFFF	CAN communication time out	
9 Example Projects

9.1 «HelloWorld»

Project	HelloWorld				
Description	 This example project provides a simple way to get used with the programming environment. Neither motion control functionality is used, nor must a motor be connected. The program may be used to learn the handling of the programming environment and to check the online connection to the EPOS2 P. 				
Used Languages	Structured Text				
Task	Timer Task (10 ms)				
Files	Project file Main program Additional information	HelloWorld.VAR Counter.ST ReadMe.TXT			

Table 9-127 «HelloWorld» in Brief

infoteam OpenPCS 2008 [C:\Program Files (x86)\maxon motor a	g\EPOS Posi	tioning Con	troller\EP(DS Studio\Sa	mples\Hel	loWorld	\HelloWo	rld.VAR] - [Coun	er.ST : Prog	r]		
51 File Edit View Project PLC Extras Insert Window	?												- 8 ×
	🤌 🛗 🔢			■ 🗎 →•	•	1	F 14.		2 P	8 8 -		□ ∟ ₽	1 🔒
Project • ×													~
E-E Project HELLOWORLD	UpCount:	ing : B	OOL :=	TRUE;									
	Count	: 0	INT :=	0;									
	CountMax	K : U	TRING -	300;									E
Resource.WL END	VAR		inino,										
Usertype.typ													+
(473	adama Tini		*			_		_					
	(Count =	0) THEN	~)										Â.
	UpCount	ing := T	RUE;										
	Text :=	119											
END	_IF;												
18	UpCount >=	ing := E	AX) THE ALSE:	.N									E
	Text :=	'HelloW	orld';										
END	IF;												
	5 Countin	ng*) ing) THE	M										
Catalog • ×	Count :	Count	+ 1;										
ELS:	B- Firmware ELSE												
🖶 🔚 Library	Count := Count - 1;												
END.	END_IF;												
4 m													
POUs Vanables	ar.51												
* Program file (C:\PROGRAM FILES (X86)\MAXON	MO' ^ ¥	Instancep	path	Name				Value	Туре	Address	Force	Comment	
Esam2 post build process finished		COUNTER	R	TEXT			<er< td=""><td>npty></td><td>STRING</td><td></td><td></td><td></td><td></td></er<>	npty>	STRING				
Total:		COUNTER	R	COUNTN	IAX			300	UINT				
Max, memory on PLC: 768 kByte, 4 kByte of	me	COUNTER	K D	COUNT	TING			TRUE	BOOL				
Max. watch entries on PLC: 2048 . 0 watch	he	COUNTER	N.	COUNT					OINT				
The PLC reports the following loaded resour	rce												
Project: HELLOWORLD													
Resource: RESOURCE	-												
Build date: 13.09.2012 - 11:38.18													
boad date: 15.09.2012 - 11:38.51	Doda	OPC Variat	blan Mint	Liber Decem									
6	, 12		Wato	mist: r(esourc	B.VVL	_							
Hit F1 for help	-				NUM	ONL	INE: USBO	;100000	0: PLC ST	OPPED			1.

Table 9-128 «HelloWorld» – Project Screen

Example Projects «SimpleMotionSequence»

9.2 «SimpleMotionSequence»

Project	SimpleMotionSequence					
Description	 The example consists of two state machines: The first implements the application process. The second implements error handling. The main state machine moves between two positions. For details → separate document «SimpleMotionSequence.pdf». 					
Used Languages	SFC (Sequential Function Chart) FBD (Function Block Diagram)					
Task	Cyclic					
Files	Project file Main program Additional information	SimpleMotionSequence.VAR PROG_Main.SFC PROG_ErrorHandling.SFC				

Table 9-129 «SimpleMotionSequence» in Brief

Table 9-130 «SimpleMotionSequence» – Project Screen

9.3 Best Practice Program Examples

The example collection (available for IEC 611131-3 editors SFC, FBD and ST) shows individual aspects of EPOS2 P programming. These examples may be part of a complete application, but they focus on single tasks during application programming.

Example	Description
«State Machine»	The example shows how to implement a state machine – the basis and starting point of every EPOS2 P program – including states and transitions. This implementation is the framework for all other examples. For details →separate document «StateMachineProject.pdf».
«Error Handling»	The example demonstrates the usage of the error handling state machine. The state machine detects axis-related errors, communication errors and gathers error information on the individual error sources. The error information is shown in separate variables on the debug screen. For details →separate document «ErrorHandlingProject.pdf».
«Input Output Handling»	The example demonstrates how to read digital and analog inputs and how to write digital outputs. For details →separate document «InputOutputHandlingProject.pdf».
«Homing»	The example demonstrates how to configure, start and stop a homing procedure. For details →separate document «HomingProject.pdf».
«Positioning»	 The example demonstrates how to execute positioning operations. Presented are three different kinds: two sequential relative positioning an interrupted positioning stopping relative positioning For details → separate document «PositioningProject.pdf».
«Continuous Motion»	 The example demonstrates how to execute continuous motions. Presented are three different kinds: two sequential continuous motions an interrupted continuous motion stopping the continuous motion For details → separate document «ContinuousMotionProject.pdf».
«Actual Value Reading»	The example demonstrates how to read the actual position, the actual velocity and the actual current of the EPOS. For details →separate document «ActualValueReadingProject.pdf».
«Object Dictionary Access»	The example shows how to read or write an object from the object dictionary. For details →separate document «ObjectDictAccessProject.pdf».
«Data Handling»	The example demonstrates how to process data. The example is used to read and write bits and to convert data types. For details →separate document «DataHandlingProject.pdf».
	Table 9-131 Best Practice Program Examples

Example Projects Application Program Examples

9.4 Application Program Examples

The example collection shows complete applications of EPOS2 P programming. These examples may consist of some «best practice» examples.

Example	Description
«Cyclic Motion»	The example demonstrates typical motion sequences with one axis. It features homing, continuous motion and positioning. For details → separate document «CyclicMotionProject.pdf».
«I/O Mode»	The example demonstrates I/O triggered motions with one axis. For details →separate document «IO_ModeProject.pdf».
«Multi-Axis Motion»	The example demonstrates how to implement coordinated motions with two axes. For details →separate document «MultiaxisMotionProject.pdf».
«Process Input Output»	The example demonstrates how to implement a supervisory control application. For details →separate document «ProcessInputOutputProject.pdf».

Table 9-132Application Program Examples

LIST OF FIGURES

Figure 2-1	Documentation Structure	10
Figure 3-2	Page Navigator	13
Figure 3-3	IEC 61131 Programming Windows.	13
Figure 3-4	OpenPCS License Registration	14
Figure 3-5	Connection Setup	15
Figure 3-6	Edit Connection	15
Figure 3-7	Select Driver	15
Figure 3-8	Connection Settings (USB, RS232, CANopen)	16
Figure 3-9	Connection Entry "ProxyEpos2"	16
Figure 3-10	Create New Project	
Figure 3-11	Edit Resource Specifications	
Figure 3-12	Create Program File	19
Figure 3-13	Add to active Resource	19
Figure 3-14	Task Specifications	19
Figure 3-15	Project HelloWorld	
Figure 3-16	Variable Declaration	20
Figure 3-17	Program Code	20
Figure 3-18	Output Window	20
Figure 3-19	Download new Code	21
Figure 3-20	Cold Start	21
Figure 3-21	"Debug" Window	21
Figure 3-22	Adding a "Breakpoint"	21
Figure 3-23	Continue Program Execution	22
Figure 4-24	Resource Pane	23
Figure 4-25	Resource Specifications Window	24
Figure 4-26	Task Type Window	25
Figure 4-27	Edit Task Specification – Optimization	25
Figure 4-28	Edit Task Specification – Interrupt	26
Figure 4-29	Network Configuration Overview	27
Figure 4-30	Tab "Master"	28
Figure 4-31	Tab "SYNC Master"	29
Figure 4-32	Network Info	30
Figure 4-33	Cycle Time	31
Figure 4-34	Tab "PDO"	32
Figure 4-35	Tab "PDO" – Edit Dialog	33
Figure 4-36	Tab "Heartbeat Control"	
Figure 4-37	Tab "Slave"	35
Figure 4-38	Tab "Network Variables"	36
Figure 4-39	Add Network Variable	
Figure 4-40	Edit PDO Links	38
Figure 4-41	Lock/unlock PDOs	
Figure 4-42	Reset PDOs	39

Figure 4-43	Declaration of Network Variables	
Figure 4-44	Tab "PDO"	
Figure 4-45	Tab "PDO" – Edit Dialog	
Figure 4-46	Tab "Heartbeat Control"	43
Figure 4-47	Tab "Bootup"	
Figure 4-48	Output Network Variables (from IEC 61131 Program to Slave)	
Figure 4-49	Input Network Variables (from Slave to IEC 61131 Program)	
Figure 4-50	Network Variable File	
Figure 4-51	Project Browser in Programming Tool	
Figure 5-52	MC_Power	50
Figure 5-53	MC_ReadStatus	51
Figure 5-54	MC_ReadStatus – States	52
Figure 5-55	MC_ReadAxisError	53
Figure 5-56	MC_ReadParameter	54
Figure 5-57	MC_ReadLongParameter	56
Figure 5-58	MC_ReadBoolParameter	58
Figure 5-59	MC_WriteParameter	59
Figure 5-60	MC_WriteLongParameter	61
Figure 5-61	MC_ReadActualPosition	63
Figure 5-62	MC_ReadActualVelocity	64
Figure 5-63	MC_ReadActualCurrent	65
Figure 5-64	MC_Reset	66
Figure 5-65	MC_SetOperationMode	67
Figure 5-66	MC_MoveAbsolute	68
Figure 5-67	MC_MoveAbsolute – Sequence	69
Figure 5-68	MC_MoveRelative	70
Figure 5-69	MC_MoveRelative – Sequence	71
Figure 5-70	MC_MoveVelocity	
Figure 5-71	MC_MoveVelocity – Sequence	73
Figure 5-72	MC_Home	
Figure 5-73	MC_Stop	
Figure 5-74	MU_GetHomingParameter	
Figure 5-75	MU_SetHomingParameter	
Figure 5-76	MU_ActivatePositionMode	80
Figure 5-77	MU_SetPositionMust	81
Figure 5-78	MU_EnableAnalogPositionSetpoint	82
Figure 5-79	MU_DisableAnalogPositionSetpoint	83
Figure 5-80	MU_GetAnalogPositionParameter	84
Figure 5-81	MU_SetAnalogPositionParameter	85
Figure 5-82	MU_ActivateVelocityMode	86
Figure 5-83	MU_SetPositionMust	87
Figure 5-84	MU_EnableAnalogVelocitySetpoint	
Figure 5-85	MU_DisableAnalogVelocitySetpoint	89
Figure 5-86	MU_GetAnalogVelocityParameter	90
Figure 5-87	MU_SetAnalogVelocityParameter	91

Figure 5-88	MU_ActivateCurrentMode	92
Figure 5-89	MU_SetCurrentMust	93
Figure 5-90	MU_EnableAnalogCurrentSetpoint	94
Figure 5-91	MU_DisableAnalogCurrentSetpoint	95
Figure 5-92	MU_GetAnalogCurrentParameter	96
Figure 5-93	MU_SetAnalogCurrentParameter	97
Figure 5-94	MU_ActivateMasterEncoderMode	98
Figure 5-95	MU_GetMasterEncoderParameter	99
Figure 5-96	MU_SetMasterEncoderParameter	100
Figure 5-97	MU_ActivateStepDirectionMode	101
Figure 5-98	MU_GetStepDirectionParameter	102
Figure 5-99	MU_SetStepDirectionParameter	103
Figure 5-100	MU_ActivateInterpolatedPositionMode	104
Figure 5-101	MU_ClearlpmBuffer	105
Figure 5-102	MU_AddPvtValues	106
Figure 5-103	MU_AddPvtValue	107
Figure 5-104	MU_StartIpmTrajectory.	108
Figure 5-105	MU_StopIpmTrajectory	109
Figure 5-106	MU_GetIpmStatus	110
Figure 5-107	MU_GetIpmTrajectoryStatus	111
Figure 5-108	MU_GetAllDigitalInputs	112
Figure 5-109	MU_GetDigitalInput	114
Figure 5-110	MU_GetAnalogInput	115
Figure 5-111	MU_SetAllDigitalOutputs	116
Figure 5-112	MU_ReadPositionMarkerCounter	117
Figure 5-113	MU_ReadCapturedPosition	118
Figure 5-114	MU_ResetCapturedPosition	119
Figure 5-115	MU_EnablePositionCompare	120
Figure 5-116	MU_DisablePositionCompare.	121
Figure 5-117	MU_SetPositionCompareRefPos	122
Figure 5-118	MU_GetDeviceErrorCount	123
Figure 5-119	MU_GetDeviceError	124
Figure 5-120	MU_GetObject	125
Figure 5-121	MU_SetObject	126
Figure 5-122	MU_Selection	127
Figure 5-123	MU_GetBitState	128
Figure 5-124	MU_SetBitState	129
Figure 5-125	MU_DataRecorder	130
Figure 5-126	CAN_Nmt	131
Figure 5-127	CAN_SdoRead	132
Figure 5-128	CAN_SdoWrite	133
Figure 5-129	CAN_SetTxPdoEvent	134

••page intentionally left blank••

LIST OF TABLES

Table 1-1	Notations used in this Document	5
Table 1-2	Sources for additional Information	7
Table 1-3	Brand Names and Trademark Owners	8
Table 3-4	IEC 61131 Programming Window – Commands and their Effect	14
Table 3-5	Connection Settings – Commands	16
Table 4-6	Resource Specifications Window – Control Elements	
Table 4-7	Task Type Window – Control Elements	
Table 4-8	Edit Task Specification – Optimization Control Elements	
Table 4-9	Edit Task Specification – Interrupt Control Elements	
Table 4-10	Network Configuration Overview – Display Elements	
Table 4-11	Network Configuration Overview – Status & Icons	
Table 4-12	Tab "Master" – Control Elements	
Table 4-13	Tab "SYNC Master" – Options and Defaults/Calculations	
Table 4-14	Tab "SYNC Master" – Best Practice	
Table 4-15	Network Info – Parameters	
Table 4-16	Network Info – Table Columns	
Table 4-17	Tab "PDO" – Functions.	
Table 4-18	Tab "PDO" – Edit Dialog Functions	
Table 4-19	Tab "Heartbeat Control" – Control Elements	
Table 4-20	Tab "Slave" – Control Elements	
Table 4-21	Network Variables: EPOS2 P [Node 1] to EPOS [Internal]	
Table 4-22	Network Variables: EPOS2 P [Node 1] from EPOS [Internal]	
Table 4-23	Tab "Network Variables" – Control Elements	
Table 4-24	Add Network Variable – Parameters	
Table 4-25	Edit PDO Links – Communication Parameter	
Table 4-26	Edit PDO Links – PDO Link	
Table 4-27	Edit PDO Links – Mapped Objects	
Table 4-28	Lock or Unlock PDOs – Icons.	
Table 4-29	Reset PDOs – Options	
Table 4-30	Tab "PDO" – Functions	
Table 4-31	Tab "PDO" – Edit Dialog Functions	
Table 4-32	Tab "Heartbeat Control" – Control Elements	
Table 4-33	Tab "Bootup" – Options and Defaults Consumer	
Table 4-34	Motion Control Function Block: Configuration of Axis Number	
Table 4-35	CANopen CiA 301 Function Block: Configuration of Node ID	
Table 5-36	MC_Power	50
Table 5-37	MC_ReadStatus	51
Table 5-38	MC_ReadAxisError.	
Table 5-39	MC_ReadParameter.	
Table 5-40	MC_ReadLongParameter	56
Table 5-41	MC_ReadBoolParameter	
Table 5-42	MC_WriteParameter	

Table 5-43	MC_WriteLongParameter.	61
Table 5-44	MC_ReadActualPosition	63
Table 5-45	MC_ReadActualVelocity.	64
Table 5-46	MC_ReadActualCurrent	65
Table 5-47	MC_Reset	66
Table 5-48	MC_SetOperationMode	.67
Table 5-49	MC_MoveAbsolute	68
Table 5-50	MC_MoveRelative	70
Table 5-51	MC_MoveVelocity	72
Table 5-52	MC_Home	74
Table 5-53	MC_Stop	75
Table 5-54	MU_GetHomingParameter	.76
Table 5-55	MU_SetHomingParameter	.78
Table 5-56	MU_ActivatePositionMode	. 80
Table 5-57	MU_SetPositionMust	81
Table 5-58	MU_EnableAnalogPositionSetpoint	82
Table 5-59	MU_DisableAnalogPositionSetpoint	83
Table 5-60	MU_GetAnalogPositionParameter	84
Table 5-61	MU_SetAnalogPositionParameter	85
Table 5-62	MU_ActivateVelocityMode	.86
Table 5-63	MU_SetPositionMust	87
Table 5-64	MU_EnableAnalogVelocitySetpoint	88
Table 5-65	MU_DisableAnalogVelocitySetpoint	89
Table 5-66	MU_GetAnalogVelocityParameter	90
Table 5-67	MU_SetAnalogVelocityParameter	91
Table 5-68	MU_ActivateCurrentMode	92
Table 5-69	MU_SetCurrentMust.	93
Table 5-70	MU_EnableAnalogCurrentSetpoint	94
Table 5-71	MU_DisableAnalogCurrentSetpoint	95
Table 5-72	MU_GetAnalogCurrentParameter	96
Table 5-73	MU_SetAnalogCurrentParameter	97
Table 5-74	MU_ActivateMasterEncoderMode	98
Table 5-75	MU_GetMasterEncoderParameter	99
Table 5-76	MU_SetMasterEncoderParameter	100
Table 5-77	MU_ActivateStepDirectionMode	101
Table 5-78	MU_GetStepDirectionParameter	102
Table 5-79	MU_SetStepDirectionParameter	103
Table 5-80	MU_ActivateInterpolatedPositionMode	104
Table 5-81	MU_ClearlpmBuffer	105
Table 5-82	MU_AddPvtValues	106
Table 5-83	MU_AddPvtValue	107
Table 5-84	MU_StartIpmTrajectory	108
Table 5-85	MU_StopIpmTrajectory	109
Table 5-86	MU_GetIpmStatus	110
Table 5-87	MU GetIpmTrajectoryStatus	111

maxon motor control

EPOS2 P Programmable Positioning Controllers EPOS2 P Programming Reference

Table 5-88	MU_GetAllDigitalInputs	.112
Table 5-89	MU_GetDigitalInput	.114
Table 5-90	MU_GetAnalogInput	.115
Table 5-91	MU_SetAllDigitalOutputs	.116
Table 5-92	MU_ReadPositionMarkerCounter	.117
Table 5-93	MU_ReadCapturedPosition	.118
Table 5-94	MU_ResetCapturedPosition	.119
Table 5-95	MU_EnablePositionCompare	.120
Table 5-96	MU_DisablePositionCompare.	.121
Table 5-97	MU_SetPositionCompareRefPos	.122
Table 5-98	MU_GetDeviceErrorCount	.123
Table 5-99	MU_GetDeviceError	.124
Table 5-100	MU_GetObject	125
Table 5-101	MU_SetObject	126
Table 5-102	MU_Selection	127
Table 5-103	MU_GetBitState	128
Table 5-104	MU_SetBitState	129
Table 5-105	MU_DataRecorder	.130
Table 5-106	CAN_Nmt	131
Table 5-107	CAN_SdoRead	.132
Table 5-108	CAN_SdoWrite	133
Table 5-109	CAN_SetTxPdoEvent	.134
Table 6-110	User Marker Variables – Examples	.135
Table 6-111	Global Status Register Markers	.136
Table 6-112	Global Status Register Markers – Examples	.136
Table 6-113	Global Axis Error Register Markers	.137
Table 6-114	Global Axis Error Register Markers – Examples	.137
Table 6-115	CANopen Slave Error Register Markers – Examples 1	.138
Table 6-116	CANopen Slave Error Register Markers – Examples 2	.138
Table 7-117	Input Network Variables (IEC-61131 Program)	.139
Table 7-118	Process Input Objects (Object Dictionary)	139
Table 7-119	Output Network Variables (IEC-61131 Program)	140
Table 7-120	Process Output Objects (Object Dictionary)	140
Table 7-121	Input Network Variables (IEC-61131 Program)	.141
Table 7-122	Process Input Objects (Object Dictionary)	.141
Table 7-123	Output Network Variables (IEC-61131 Program)	142
Table 7-124	Process Output Objects (Object Dictionary)	142
Table 8-125	Error Codes – Programming Environment	.144
Table 8-126	Error Codes – Motion Control Function Blocks.	.144
Table 9-127	«HelloWorld» in Brief	145
Table 9-128	«HelloWorld» – Project Screen	145
Table 9-129	«SimpleMotionSequence» in Brief	.146
Table 9-130	«SimpleMotionSequence» – Project Screen	.146
Table 9-131	Best Practice Program Examples	.147
Table 9-132	Application Program Examples.	.148

••page intentionally left blank••

INDEX

A

additionally applicable regulations alerts **6** applicable EU directive **2**, application examples

В

behaviour upon error/warning **143** Best Practice (Program Examples) **147** bit rate (maximum permitted) **30**

С

CAN... (CANopen DS-301 Function Blocks) 131 CAN-I (Internal Network) 27 CAN Nmt 131 CAN-S (Slave Network) 27 CAN SdoRead 132 CAN SdoWrite 133 CAN SetTxPdoEvent 134 configuration master 28 network variables 36 OpenPCS license key 14 slave 35 control elements (GUI) Bootup 44 Heartbeat Control 34, 43 icons 27 Master 28 Network Configuration 27 Network Variables 36, 37 PDO 32, 33, 41, 42 resource properties 24 Slave 35 status indicators 27 SYNC Master 29 task properties 25 task specification 26 country-specific regulations 11

Ε

edit resource specification 18 effect upon error/warning 143 error (behavior of the device) 143 error codes motion control function blocks 144 programming environment 143 ESD 11 EU directive, applicable 2, 9

F

file format pim 13 poe 36 var 14 from node (network variables) 36 Function Blocks CANopen DS-301 131 Current Mode 92 Data Handling 127 Error Handling 123 generally applicable parameters 49 inputs 112 Interpolated Position Mode 104 Master Encoder Mode 98 Maxon Utility 76 Motion Control 50 Object Access 125 outputs 112 Position Marker 117 Position Mode 80 Step/Direction Mode 101 Velocity Mode 86

G

generally applicable rules for Function Blocks **49** GUI (Grafical User Interface) **27**

Н

how to build intermediate results 135 check online connection 145 configure the network 27, 45 create a new project 18 enter program code 19 find OpenPCS license key 14 find OpenPCS serial number 14 get used with the programming environment 145 interpret icons (and signs) used in the document 6 read this document 2 set resource properties 23 set task properties 25

I

icons and their meaning (GUI) incorporation into surrounding system **2**, informatory signs Internal Network, configuration of interrupts (GUI) task specification

Μ

mandatory action signs 6 Marker ERR_mAxis... 136 ERR_mEpos... 136 ERR mErrorRegister... 138 ERR mInternalEpos... 138 UserMarkerVariable 135 MC... (Motion Control Function Blocks) 50 MC Home 74 MC MoveAbsolute 68 MC MoveRelative 70 MC MoveVelocity 72 MC Power 50 MC ReadActualCurrent 65 MC ReadActualPosition 63 MC ReadActualVelocity 64 MC ReadAxisError 53 MC ReadBoolParameter 58 MC_ReadLongParameter 56 MC_ReadParameter 54 MC ReadStatus 51 MC Reset 66 MC SetOperationMode 67 MC Stop 75 MC WriteLongParameter 61 MC WriteParameter 59 MU... (Maxon Utility Function Blocks) 76 MU ActivateCurrentMode 92 MU ActivateInterpolatedPositionMode 104 MU_ActivateMasterEncoderMode 98 MU ActivatePositionMode 80 MU ActivateStepDirectionMode 101 MU ActivateVelocityMode 86 MU AddPvtValue 107 MU AddPvtValues 106 MU ClearIpmBuffer 105 MU DataRecorder 130 MU DisableAnalogCurrentSetpoint 95 MU DisableAnalogPosition 83 MU DisableAnalogVelocitySetpoint 89 MU_DisablePositionCompare 121 MU EnableAnalogCurrentSetpoint 94 MU EnableAnalogPosition 82 MU EnableAnalogVelocitySetpoint 88 MU EnablePositionCompare 120 MU GetAllDigitalInputs 112 MU GetAnalogCurrentParameter 96 MU_GetAnalogInput 115 MU_GetAnalogPositionParameter 84 MU GetAnalogVelocityParameter 90 MU_GetBitState 128 MU GetDeviceError 124 MU GetDeviceErrorCount 123 MU GetDigitalInput 114 MU GetHomingParameter 76

MU_GetIpmStatus 110 MU GetIpmTrajectoryStatus 111 MU GetMasterEncoderParameter 99 MU GetObject 125 MU GetStepDirectionParameter 102 MU ReadCapturedPosition 118 MU ReadPositionMarkerCounter 117 MU_ResetCapturedPosition 119 MU Selection 127 MU SetAllDigitalOutputs 116 MU_SetAnalogCurrentParameter 97 MU_SetAnalogPositionParameter 85 MU SetAnalogVelocityParameter 91 MU SetBitState 129 MU SetCurrentMust 93 MU SetHomingParameter 78 MU SetMasterEncoderParameter 100 MU SetObject 126 MU_SetPositionCompareRefPos 122 MU SetPositionMust 81 MU_SetStepDirectionParameter 103 MU_SetVelocityMust 87 MU StartIpmTrajectory 108 MU StopIpmTrajectory 109

Ν

network length (maximum permitted) *30* network types *27* non-compliance of surrounding system *2*

0

OpenPCS Programming Tool **13** operating license **2**, **9** other machinery (incorporation into) **2**, **9**

Ρ

parameters, generally applicable precautions prerequisites prior installation **2**, process I/Os Internal Network Slave Network programming examples programming with OpenPCS prohibitive signs purpose of this document

R

regulations, additionally applicable *11* resource definition *23* rules, generally applicable *49*

S

safety alerts safety first! signs informative mandatory prohibitive signs used Slave Network, configuration of status indicators (GUI) surrounding system (incorporation into) symbols used

Т

task, definition of **25** to node (network variables) **36**

V

view resource specification 18

W

warning (behavior of the device) 143

© 2016 maxon motor. All rights reserved.

The present document – including all parts thereof – is protected by copyright. Any use (including reproduction, translation, microfilming and other means of electronic data processing) beyond the narrow restrictions of the copyright law without the prior approval of maxon motor ag, is not permitted and subject to persecution under the applicable law.

maxon motor ag

Brünigstrasse 220 P.O.Box 263 CH-6072 Sachseln Switzerland Phone +41 41 666 15 00

Fax +41 41 666 16 50

www.maxonmotor.com